Situation when π = 1 and γv and λv become irrelevant (graph is a plane), all quadrants
. | Average (AVG) . | Standard dev. (SD) . | SD/AVG . | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . |
γe = 0; λe = 0 | 0.173 | 0.014 | 662.665 | 0.005 | 0.015 | 22.528 | 0.031 | 1.046 | 0.034 |
γe = 0; λe = 4 | 0.388 | 0.093 | 985.428 | 0.006 | 0.014 | 11.099 | 0.014 | 0.149 | 0.011 |
γe = 1; λe = 0 | 0.271 | 0.018 | 599.142 | 0.007 | 0.019 | 20.701 | 0.026 | 1.046 | 0.035 |
γe = 1; λe = 4 | 0.760 | 0.021 | 541.691 | 0.010 | 0.010 | 25.497 | 0.013 | 0.472 | 0.047 |
γe = 0; λe = 20 | 0.011 | 0.000 | 221.471 | 0.022 | 0.000 | 0.847 | 1.961 | 2.243 | 0.004 |
γe = 10; λe = 0 | 0.052 | −0.005 | 209.822 | 0.046 | 0.004 | 9.356 | 0.877 | −0.877 | 0.045 |
γe = 10; λe = 20 | 0.000 | 0.000 | 221.100 | 0.000 | 0.000 | 0.000 | . | . | 0.000 |
. | Average (AVG) . | Standard dev. (SD) . | SD/AVG . | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . |
γe = 0; λe = 0 | 0.173 | 0.014 | 662.665 | 0.005 | 0.015 | 22.528 | 0.031 | 1.046 | 0.034 |
γe = 0; λe = 4 | 0.388 | 0.093 | 985.428 | 0.006 | 0.014 | 11.099 | 0.014 | 0.149 | 0.011 |
γe = 1; λe = 0 | 0.271 | 0.018 | 599.142 | 0.007 | 0.019 | 20.701 | 0.026 | 1.046 | 0.035 |
γe = 1; λe = 4 | 0.760 | 0.021 | 541.691 | 0.010 | 0.010 | 25.497 | 0.013 | 0.472 | 0.047 |
γe = 0; λe = 20 | 0.011 | 0.000 | 221.471 | 0.022 | 0.000 | 0.847 | 1.961 | 2.243 | 0.004 |
γe = 10; λe = 0 | 0.052 | −0.005 | 209.822 | 0.046 | 0.004 | 9.356 | 0.877 | −0.877 | 0.045 |
γe = 10; λe = 20 | 0.000 | 0.000 | 221.100 | 0.000 | 0.000 | 0.000 | . | . | 0.000 |
Notice: γe, λe and γv, λv have the same roles in the equations. Thus, we obtain the same surfaces both varying γe, λe to their full extent with employees only and varying γv, λv to their full extent with volunteers only. Within this surface, reaching γe = 10 or λe = 20 produces non-interesting extreme solutions, while maintaining γe between 0 and 1 and λe between 0 and 4 results in interesting dynamics. On this basis, we defined firms’ strategies, restricting our analysis to that portion of the plane.
Situation when π = 1 and γv and λv become irrelevant (graph is a plane), all quadrants
. | Average (AVG) . | Standard dev. (SD) . | SD/AVG . | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . |
γe = 0; λe = 0 | 0.173 | 0.014 | 662.665 | 0.005 | 0.015 | 22.528 | 0.031 | 1.046 | 0.034 |
γe = 0; λe = 4 | 0.388 | 0.093 | 985.428 | 0.006 | 0.014 | 11.099 | 0.014 | 0.149 | 0.011 |
γe = 1; λe = 0 | 0.271 | 0.018 | 599.142 | 0.007 | 0.019 | 20.701 | 0.026 | 1.046 | 0.035 |
γe = 1; λe = 4 | 0.760 | 0.021 | 541.691 | 0.010 | 0.010 | 25.497 | 0.013 | 0.472 | 0.047 |
γe = 0; λe = 20 | 0.011 | 0.000 | 221.471 | 0.022 | 0.000 | 0.847 | 1.961 | 2.243 | 0.004 |
γe = 10; λe = 0 | 0.052 | −0.005 | 209.822 | 0.046 | 0.004 | 9.356 | 0.877 | −0.877 | 0.045 |
γe = 10; λe = 20 | 0.000 | 0.000 | 221.100 | 0.000 | 0.000 | 0.000 | . | . | 0.000 |
. | Average (AVG) . | Standard dev. (SD) . | SD/AVG . | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . | Gini . | Beta . | Perf . |
γe = 0; λe = 0 | 0.173 | 0.014 | 662.665 | 0.005 | 0.015 | 22.528 | 0.031 | 1.046 | 0.034 |
γe = 0; λe = 4 | 0.388 | 0.093 | 985.428 | 0.006 | 0.014 | 11.099 | 0.014 | 0.149 | 0.011 |
γe = 1; λe = 0 | 0.271 | 0.018 | 599.142 | 0.007 | 0.019 | 20.701 | 0.026 | 1.046 | 0.035 |
γe = 1; λe = 4 | 0.760 | 0.021 | 541.691 | 0.010 | 0.010 | 25.497 | 0.013 | 0.472 | 0.047 |
γe = 0; λe = 20 | 0.011 | 0.000 | 221.471 | 0.022 | 0.000 | 0.847 | 1.961 | 2.243 | 0.004 |
γe = 10; λe = 0 | 0.052 | −0.005 | 209.822 | 0.046 | 0.004 | 9.356 | 0.877 | −0.877 | 0.045 |
γe = 10; λe = 20 | 0.000 | 0.000 | 221.100 | 0.000 | 0.000 | 0.000 | . | . | 0.000 |
Notice: γe, λe and γv, λv have the same roles in the equations. Thus, we obtain the same surfaces both varying γe, λe to their full extent with employees only and varying γv, λv to their full extent with volunteers only. Within this surface, reaching γe = 10 or λe = 20 produces non-interesting extreme solutions, while maintaining γe between 0 and 1 and λe between 0 and 4 results in interesting dynamics. On this basis, we defined firms’ strategies, restricting our analysis to that portion of the plane.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.