Table 1.

Situation when π = 1 and γv and λv become irrelevant (graph is a plane), all quadrants

Average (AVG)Standard dev. (SD)SD/AVG
ParametersGiniBetaPerfGiniBetaPerfGiniBetaPerf
γe = 0; λe = 00.1730.014662.6650.0050.01522.5280.0311.0460.034
γe = 0; λe = 40.3880.093985.4280.0060.01411.0990.0140.1490.011
γe = 1; λe = 00.2710.018599.1420.0070.01920.7010.0261.0460.035
γe = 1; λe = 40.7600.021541.6910.0100.01025.4970.0130.4720.047
γe = 0; λe = 200.0110.000221.4710.0220.0000.8471.9612.2430.004
γe = 10; λe = 00.052−0.005209.8220.0460.0049.3560.877−0.8770.045
γe = 10; λe = 200.0000.000221.1000.0000.0000.000..0.000
Average (AVG)Standard dev. (SD)SD/AVG
ParametersGiniBetaPerfGiniBetaPerfGiniBetaPerf
γe = 0; λe = 00.1730.014662.6650.0050.01522.5280.0311.0460.034
γe = 0; λe = 40.3880.093985.4280.0060.01411.0990.0140.1490.011
γe = 1; λe = 00.2710.018599.1420.0070.01920.7010.0261.0460.035
γe = 1; λe = 40.7600.021541.6910.0100.01025.4970.0130.4720.047
γe = 0; λe = 200.0110.000221.4710.0220.0000.8471.9612.2430.004
γe = 10; λe = 00.052−0.005209.8220.0460.0049.3560.877−0.8770.045
γe = 10; λe = 200.0000.000221.1000.0000.0000.000..0.000

Notice: γe, λe and γv, λv have the same roles in the equations. Thus, we obtain the same surfaces both varying γe, λe to their full extent with employees only and varying γv, λv to their full extent with volunteers only. Within this surface, reaching γe = 10 or λe = 20 produces non-interesting extreme solutions, while maintaining γe between 0 and 1 and λe between 0 and 4 results in interesting dynamics. On this basis, we defined firms’ strategies, restricting our analysis to that portion of the plane.

Table 1.

Situation when π = 1 and γv and λv become irrelevant (graph is a plane), all quadrants

Average (AVG)Standard dev. (SD)SD/AVG
ParametersGiniBetaPerfGiniBetaPerfGiniBetaPerf
γe = 0; λe = 00.1730.014662.6650.0050.01522.5280.0311.0460.034
γe = 0; λe = 40.3880.093985.4280.0060.01411.0990.0140.1490.011
γe = 1; λe = 00.2710.018599.1420.0070.01920.7010.0261.0460.035
γe = 1; λe = 40.7600.021541.6910.0100.01025.4970.0130.4720.047
γe = 0; λe = 200.0110.000221.4710.0220.0000.8471.9612.2430.004
γe = 10; λe = 00.052−0.005209.8220.0460.0049.3560.877−0.8770.045
γe = 10; λe = 200.0000.000221.1000.0000.0000.000..0.000
Average (AVG)Standard dev. (SD)SD/AVG
ParametersGiniBetaPerfGiniBetaPerfGiniBetaPerf
γe = 0; λe = 00.1730.014662.6650.0050.01522.5280.0311.0460.034
γe = 0; λe = 40.3880.093985.4280.0060.01411.0990.0140.1490.011
γe = 1; λe = 00.2710.018599.1420.0070.01920.7010.0261.0460.035
γe = 1; λe = 40.7600.021541.6910.0100.01025.4970.0130.4720.047
γe = 0; λe = 200.0110.000221.4710.0220.0000.8471.9612.2430.004
γe = 10; λe = 00.052−0.005209.8220.0460.0049.3560.877−0.8770.045
γe = 10; λe = 200.0000.000221.1000.0000.0000.000..0.000

Notice: γe, λe and γv, λv have the same roles in the equations. Thus, we obtain the same surfaces both varying γe, λe to their full extent with employees only and varying γv, λv to their full extent with volunteers only. Within this surface, reaching γe = 10 or λe = 20 produces non-interesting extreme solutions, while maintaining γe between 0 and 1 and λe between 0 and 4 results in interesting dynamics. On this basis, we defined firms’ strategies, restricting our analysis to that portion of the plane.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close