Table 2.

Summary of Alternative Test-Score Data-Generating Processes

ModelScore levelScore varianceDescription
1Restricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + \sigma ^2_e$|Independent households & schools
2Household upper bound|$h_j+\gamma \bar{h}_{jk} + \nu _{k} + e_{ijk}$||$(1+\gamma )^2\sigma ^2_h + \sigma ^2_{\nu } + \sigma ^2_e$|Household effects partly absorb school effects
3School upper bound|$s_k+\theta \bar{s}_{kj} + \omega _{j} + e_{ijk}$||$(1+\theta )^2\sigma ^2_s + \sigma ^2_{\omega } + \sigma ^2_e$|School effects partly absorb household effects
4Unrestricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + 2\Sigma _{hs} + \sigma ^2_e$|Correlated household & school factors
ModelScore levelScore varianceDescription
1Restricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + \sigma ^2_e$|Independent households & schools
2Household upper bound|$h_j+\gamma \bar{h}_{jk} + \nu _{k} + e_{ijk}$||$(1+\gamma )^2\sigma ^2_h + \sigma ^2_{\nu } + \sigma ^2_e$|Household effects partly absorb school effects
3School upper bound|$s_k+\theta \bar{s}_{kj} + \omega _{j} + e_{ijk}$||$(1+\theta )^2\sigma ^2_s + \sigma ^2_{\omega } + \sigma ^2_e$|School effects partly absorb household effects
4Unrestricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + 2\Sigma _{hs} + \sigma ^2_e$|Correlated household & school factors

Source: Authors’ elaboration.

Note: Variances in rows 3 and 4 assume |$\sigma _{h}^{2} \equiv {\rm{Var}}{(\textit h_{j})}\approx {{\rm Var}}{(\bar{h}_{jk})}$| and |${\rm Var}{(\textit s_{k})}\approx {\rm Var}{(\bar{s}_{\textit{kj}})}$|⁠.

Table 2.

Summary of Alternative Test-Score Data-Generating Processes

ModelScore levelScore varianceDescription
1Restricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + \sigma ^2_e$|Independent households & schools
2Household upper bound|$h_j+\gamma \bar{h}_{jk} + \nu _{k} + e_{ijk}$||$(1+\gamma )^2\sigma ^2_h + \sigma ^2_{\nu } + \sigma ^2_e$|Household effects partly absorb school effects
3School upper bound|$s_k+\theta \bar{s}_{kj} + \omega _{j} + e_{ijk}$||$(1+\theta )^2\sigma ^2_s + \sigma ^2_{\omega } + \sigma ^2_e$|School effects partly absorb household effects
4Unrestricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + 2\Sigma _{hs} + \sigma ^2_e$|Correlated household & school factors
ModelScore levelScore varianceDescription
1Restricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + \sigma ^2_e$|Independent households & schools
2Household upper bound|$h_j+\gamma \bar{h}_{jk} + \nu _{k} + e_{ijk}$||$(1+\gamma )^2\sigma ^2_h + \sigma ^2_{\nu } + \sigma ^2_e$|Household effects partly absorb school effects
3School upper bound|$s_k+\theta \bar{s}_{kj} + \omega _{j} + e_{ijk}$||$(1+\theta )^2\sigma ^2_s + \sigma ^2_{\omega } + \sigma ^2_e$|School effects partly absorb household effects
4Unrestricted linearhj + sk + e|${ijk}$||$\sigma ^2_h + \sigma ^2_s + 2\Sigma _{hs} + \sigma ^2_e$|Correlated household & school factors

Source: Authors’ elaboration.

Note: Variances in rows 3 and 4 assume |$\sigma _{h}^{2} \equiv {\rm{Var}}{(\textit h_{j})}\approx {{\rm Var}}{(\bar{h}_{jk})}$| and |${\rm Var}{(\textit s_{k})}\approx {\rm Var}{(\bar{s}_{\textit{kj}})}$|⁠.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close