Table 2

Local reference praxeologies |${\protect\mathfrak{p}}_{iE}=\left[{T}_{iE},{\tau}_{iE},{\theta}_{iE},{\varTheta}_E\right],i\in \left\{1,2,3\right\}$| from the microeconomics textbook

Task (|${\boldsymbol{T}}_{\boldsymbol{E}}$|)Technique (|${\boldsymbol{\tau}}_{\boldsymbol{E}}$|)Technology (|${\boldsymbol{\theta}}_{\boldsymbol{E}}$|)
|${\boldsymbol{T}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\theta}}_{\mathbf{1}\boldsymbol{E}}$|
|$\underset{q_1,{q}_2}{\max }U\left({q}_1,{q}_2\right)\ s.t.Y={p}_1{q}_1+{p}_2{q}_2$| where |$Y,{p}_1,{p}_2$| are positive parameters when there exists an interior solution.
Exemplary tasks outlined in Section 6.2
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EG}}\right)$|1. Draw the budget line |$Y={p}_1{q}_1+{p}_2{q}_2$| 2. Draw an indifference curve (IC), |$U\left({q}_1,{q}_2\right)=\overline{q}$|⁠, on which utility is fixed at some number |$\overline{q}.$| 3. Highest IC rule: Find the highest such IC (farthest from the origin) that satisfies |${p}_1{q}_1+{p}_2{q}_2\le Y$| for at least one bundle (⁠|${q}_1,{q}_2$|⁠). Graphically, this implies (tangency rule) shifting the IC up until it just touches the budget constraint.Assumption of the model (A1)–(A4)
1. As more is preferred to less a consumer (weakly) prefers bundle (⁠|${q}_i,{q}_j$|⁠) to bundle (⁠|${q}_i,{q}_k$|⁠) for any |${q}_j\ge{q}_k.$| This ensures the IC are convex to the origin and that higher IC are ‘better’. 2. Bundles for which |${p}_1{q}_1+{p}_2{q}_2>Y$|are not feasible, hence |${p}_1{q}_1+{p}_2{q}_2\le Y$|must hold for the optimal bundle. 3. Point 1 and 2 ensure that the highest IC rule holds. 4. The last step ensures the consumer cannot purchase negative quantities of a good. 5. When the IC are strictly convex and differentiable. The MRS = MRT holds at a unique point of tangency (⁠|$\mathrm{MRS}=-\frac{U_1}{U_2}=-\frac{p_1}{p_2}=\mathrm{MRT}$|⁠)
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EL}}\right)$|1. Set up the function |$L\left({q}_1,{q}_2,\lambda \right)\!=\!U\left({q}_1,{q}_2\right)+ \lambda \left(Y-{p}_1{q}_1-{p}_2{q}_2\right)$| 2. Solve for |${q}_1,{q}_2$| from: (1) |$\frac{\partial L}{\partial{q}_1}=\frac{\partial U}{\partial{q}_1}-\lambda{p}_1={U}_1-\lambda{p}_1=0$| (2) |$\frac{\partial L}{\partial{q}_2}={U}_2-\lambda{p}_2=0$| (3) |$\frac{\partial L}{\partial \lambda }=Y-{p}_1{q}_1-{p}_2{q}_2=0$|
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{ES}}\right)$|1. If the IC are strictly convex and differentiable, calculate the slope of the IC, |$\mathrm{MRS}=-\frac{d{q}_2}{d{q}_1}=-\frac{U_1}{U_2}$|⁠, and equate it with the slope of the budget line |$\mathrm{MRT}-\frac{p_1}{p_2}.$| (Tangency rule.) Solve for |${q}_1$| and |${q}_2$|⁠. For some functions |${q}_1$| and |${q}_2$| can be directly taken from a table. 2. If the IC is not strictly convex and differentiable, the optimal bundle must be obtained by other techniques which we do not detail here. 3. Plug in |${q}_1$| and |${q}_2$|from Step 1 into the budget constraint |$Y={p}_1{q}_1+{p}_2{q}_2$| to obtain the optimal bundle.
Task (|${\boldsymbol{T}}_{\boldsymbol{E}}$|)Technique (|${\boldsymbol{\tau}}_{\boldsymbol{E}}$|)Technology (|${\boldsymbol{\theta}}_{\boldsymbol{E}}$|)
|${\boldsymbol{T}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\theta}}_{\mathbf{1}\boldsymbol{E}}$|
|$\underset{q_1,{q}_2}{\max }U\left({q}_1,{q}_2\right)\ s.t.Y={p}_1{q}_1+{p}_2{q}_2$| where |$Y,{p}_1,{p}_2$| are positive parameters when there exists an interior solution.
Exemplary tasks outlined in Section 6.2
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EG}}\right)$|1. Draw the budget line |$Y={p}_1{q}_1+{p}_2{q}_2$| 2. Draw an indifference curve (IC), |$U\left({q}_1,{q}_2\right)=\overline{q}$|⁠, on which utility is fixed at some number |$\overline{q}.$| 3. Highest IC rule: Find the highest such IC (farthest from the origin) that satisfies |${p}_1{q}_1+{p}_2{q}_2\le Y$| for at least one bundle (⁠|${q}_1,{q}_2$|⁠). Graphically, this implies (tangency rule) shifting the IC up until it just touches the budget constraint.Assumption of the model (A1)–(A4)
1. As more is preferred to less a consumer (weakly) prefers bundle (⁠|${q}_i,{q}_j$|⁠) to bundle (⁠|${q}_i,{q}_k$|⁠) for any |${q}_j\ge{q}_k.$| This ensures the IC are convex to the origin and that higher IC are ‘better’. 2. Bundles for which |${p}_1{q}_1+{p}_2{q}_2>Y$|are not feasible, hence |${p}_1{q}_1+{p}_2{q}_2\le Y$|must hold for the optimal bundle. 3. Point 1 and 2 ensure that the highest IC rule holds. 4. The last step ensures the consumer cannot purchase negative quantities of a good. 5. When the IC are strictly convex and differentiable. The MRS = MRT holds at a unique point of tangency (⁠|$\mathrm{MRS}=-\frac{U_1}{U_2}=-\frac{p_1}{p_2}=\mathrm{MRT}$|⁠)
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EL}}\right)$|1. Set up the function |$L\left({q}_1,{q}_2,\lambda \right)\!=\!U\left({q}_1,{q}_2\right)+ \lambda \left(Y-{p}_1{q}_1-{p}_2{q}_2\right)$| 2. Solve for |${q}_1,{q}_2$| from: (1) |$\frac{\partial L}{\partial{q}_1}=\frac{\partial U}{\partial{q}_1}-\lambda{p}_1={U}_1-\lambda{p}_1=0$| (2) |$\frac{\partial L}{\partial{q}_2}={U}_2-\lambda{p}_2=0$| (3) |$\frac{\partial L}{\partial \lambda }=Y-{p}_1{q}_1-{p}_2{q}_2=0$|
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{ES}}\right)$|1. If the IC are strictly convex and differentiable, calculate the slope of the IC, |$\mathrm{MRS}=-\frac{d{q}_2}{d{q}_1}=-\frac{U_1}{U_2}$|⁠, and equate it with the slope of the budget line |$\mathrm{MRT}-\frac{p_1}{p_2}.$| (Tangency rule.) Solve for |${q}_1$| and |${q}_2$|⁠. For some functions |${q}_1$| and |${q}_2$| can be directly taken from a table. 2. If the IC is not strictly convex and differentiable, the optimal bundle must be obtained by other techniques which we do not detail here. 3. Plug in |${q}_1$| and |${q}_2$|from Step 1 into the budget constraint |$Y={p}_1{q}_1+{p}_2{q}_2$| to obtain the optimal bundle.

(Continued)

Table 2

Local reference praxeologies |${\protect\mathfrak{p}}_{iE}=\left[{T}_{iE},{\tau}_{iE},{\theta}_{iE},{\varTheta}_E\right],i\in \left\{1,2,3\right\}$| from the microeconomics textbook

Task (|${\boldsymbol{T}}_{\boldsymbol{E}}$|)Technique (|${\boldsymbol{\tau}}_{\boldsymbol{E}}$|)Technology (|${\boldsymbol{\theta}}_{\boldsymbol{E}}$|)
|${\boldsymbol{T}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\theta}}_{\mathbf{1}\boldsymbol{E}}$|
|$\underset{q_1,{q}_2}{\max }U\left({q}_1,{q}_2\right)\ s.t.Y={p}_1{q}_1+{p}_2{q}_2$| where |$Y,{p}_1,{p}_2$| are positive parameters when there exists an interior solution.
Exemplary tasks outlined in Section 6.2
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EG}}\right)$|1. Draw the budget line |$Y={p}_1{q}_1+{p}_2{q}_2$| 2. Draw an indifference curve (IC), |$U\left({q}_1,{q}_2\right)=\overline{q}$|⁠, on which utility is fixed at some number |$\overline{q}.$| 3. Highest IC rule: Find the highest such IC (farthest from the origin) that satisfies |${p}_1{q}_1+{p}_2{q}_2\le Y$| for at least one bundle (⁠|${q}_1,{q}_2$|⁠). Graphically, this implies (tangency rule) shifting the IC up until it just touches the budget constraint.Assumption of the model (A1)–(A4)
1. As more is preferred to less a consumer (weakly) prefers bundle (⁠|${q}_i,{q}_j$|⁠) to bundle (⁠|${q}_i,{q}_k$|⁠) for any |${q}_j\ge{q}_k.$| This ensures the IC are convex to the origin and that higher IC are ‘better’. 2. Bundles for which |${p}_1{q}_1+{p}_2{q}_2>Y$|are not feasible, hence |${p}_1{q}_1+{p}_2{q}_2\le Y$|must hold for the optimal bundle. 3. Point 1 and 2 ensure that the highest IC rule holds. 4. The last step ensures the consumer cannot purchase negative quantities of a good. 5. When the IC are strictly convex and differentiable. The MRS = MRT holds at a unique point of tangency (⁠|$\mathrm{MRS}=-\frac{U_1}{U_2}=-\frac{p_1}{p_2}=\mathrm{MRT}$|⁠)
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EL}}\right)$|1. Set up the function |$L\left({q}_1,{q}_2,\lambda \right)\!=\!U\left({q}_1,{q}_2\right)+ \lambda \left(Y-{p}_1{q}_1-{p}_2{q}_2\right)$| 2. Solve for |${q}_1,{q}_2$| from: (1) |$\frac{\partial L}{\partial{q}_1}=\frac{\partial U}{\partial{q}_1}-\lambda{p}_1={U}_1-\lambda{p}_1=0$| (2) |$\frac{\partial L}{\partial{q}_2}={U}_2-\lambda{p}_2=0$| (3) |$\frac{\partial L}{\partial \lambda }=Y-{p}_1{q}_1-{p}_2{q}_2=0$|
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{ES}}\right)$|1. If the IC are strictly convex and differentiable, calculate the slope of the IC, |$\mathrm{MRS}=-\frac{d{q}_2}{d{q}_1}=-\frac{U_1}{U_2}$|⁠, and equate it with the slope of the budget line |$\mathrm{MRT}-\frac{p_1}{p_2}.$| (Tangency rule.) Solve for |${q}_1$| and |${q}_2$|⁠. For some functions |${q}_1$| and |${q}_2$| can be directly taken from a table. 2. If the IC is not strictly convex and differentiable, the optimal bundle must be obtained by other techniques which we do not detail here. 3. Plug in |${q}_1$| and |${q}_2$|from Step 1 into the budget constraint |$Y={p}_1{q}_1+{p}_2{q}_2$| to obtain the optimal bundle.
Task (|${\boldsymbol{T}}_{\boldsymbol{E}}$|)Technique (|${\boldsymbol{\tau}}_{\boldsymbol{E}}$|)Technology (|${\boldsymbol{\theta}}_{\boldsymbol{E}}$|)
|${\boldsymbol{T}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{E}}$||${\boldsymbol{\theta}}_{\mathbf{1}\boldsymbol{E}}$|
|$\underset{q_1,{q}_2}{\max }U\left({q}_1,{q}_2\right)\ s.t.Y={p}_1{q}_1+{p}_2{q}_2$| where |$Y,{p}_1,{p}_2$| are positive parameters when there exists an interior solution.
Exemplary tasks outlined in Section 6.2
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EG}}\right)$|1. Draw the budget line |$Y={p}_1{q}_1+{p}_2{q}_2$| 2. Draw an indifference curve (IC), |$U\left({q}_1,{q}_2\right)=\overline{q}$|⁠, on which utility is fixed at some number |$\overline{q}.$| 3. Highest IC rule: Find the highest such IC (farthest from the origin) that satisfies |${p}_1{q}_1+{p}_2{q}_2\le Y$| for at least one bundle (⁠|${q}_1,{q}_2$|⁠). Graphically, this implies (tangency rule) shifting the IC up until it just touches the budget constraint.Assumption of the model (A1)–(A4)
1. As more is preferred to less a consumer (weakly) prefers bundle (⁠|${q}_i,{q}_j$|⁠) to bundle (⁠|${q}_i,{q}_k$|⁠) for any |${q}_j\ge{q}_k.$| This ensures the IC are convex to the origin and that higher IC are ‘better’. 2. Bundles for which |${p}_1{q}_1+{p}_2{q}_2>Y$|are not feasible, hence |${p}_1{q}_1+{p}_2{q}_2\le Y$|must hold for the optimal bundle. 3. Point 1 and 2 ensure that the highest IC rule holds. 4. The last step ensures the consumer cannot purchase negative quantities of a good. 5. When the IC are strictly convex and differentiable. The MRS = MRT holds at a unique point of tangency (⁠|$\mathrm{MRS}=-\frac{U_1}{U_2}=-\frac{p_1}{p_2}=\mathrm{MRT}$|⁠)
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{EL}}\right)$|1. Set up the function |$L\left({q}_1,{q}_2,\lambda \right)\!=\!U\left({q}_1,{q}_2\right)+ \lambda \left(Y-{p}_1{q}_1-{p}_2{q}_2\right)$| 2. Solve for |${q}_1,{q}_2$| from: (1) |$\frac{\partial L}{\partial{q}_1}=\frac{\partial U}{\partial{q}_1}-\lambda{p}_1={U}_1-\lambda{p}_1=0$| (2) |$\frac{\partial L}{\partial{q}_2}={U}_2-\lambda{p}_2=0$| (3) |$\frac{\partial L}{\partial \lambda }=Y-{p}_1{q}_1-{p}_2{q}_2=0$|
|$\left({\boldsymbol{\tau}}_{\mathbf{1}\boldsymbol{ES}}\right)$|1. If the IC are strictly convex and differentiable, calculate the slope of the IC, |$\mathrm{MRS}=-\frac{d{q}_2}{d{q}_1}=-\frac{U_1}{U_2}$|⁠, and equate it with the slope of the budget line |$\mathrm{MRT}-\frac{p_1}{p_2}.$| (Tangency rule.) Solve for |${q}_1$| and |${q}_2$|⁠. For some functions |${q}_1$| and |${q}_2$| can be directly taken from a table. 2. If the IC is not strictly convex and differentiable, the optimal bundle must be obtained by other techniques which we do not detail here. 3. Plug in |${q}_1$| and |${q}_2$|from Step 1 into the budget constraint |$Y={p}_1{q}_1+{p}_2{q}_2$| to obtain the optimal bundle.

(Continued)

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close