|$ \hat{u}_{0} \gt 0 $|: The parameters satisfy the inequalities: |$ 0 \lt\hat{u}_{0} \lt\hat{u}_{0}+2\sigma \lt c^{*} \lt\sigma+c^{*} \lt\tilde{u}_{0}. $|
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y \lt\hat{u}_{0} $| | |$ \hat{J}_{0}\gg I_{0}= $| | |$ I_{1}/\hat{J}_{0}= $| | |$ u=\tilde{u}_{0}+ $| |
|$ O(I_{1})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0} \lt y \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}\hat{u}_{0}+2\sigma $| | |$ I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0}+2\sigma \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}y\,\lt\,c^{*} $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{t(k^{*}-\sigma)(y-c^{*}-\sigma)}\right) $| | |
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}c^{*}+\sigma $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{-\sigma t(y-\hat{u}_{0}-\sigma)}\right) $| | |
|$ y\,\gt\,c^{*}+\sigma $| | |$ I_{0}\gg I_{1} $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ ~{}~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y \lt\hat{u}_{0} $| | |$ \hat{J}_{0}\gg I_{0}= $| | |$ I_{1}/\hat{J}_{0}= $| | |$ u=\tilde{u}_{0}+ $| |
|$ O(I_{1})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0} \lt y \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}\hat{u}_{0}+2\sigma $| | |$ I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0}+2\sigma \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}y\,\lt\,c^{*} $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{t(k^{*}-\sigma)(y-c^{*}-\sigma)}\right) $| | |
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}c^{*}+\sigma $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{-\sigma t(y-\hat{u}_{0}-\sigma)}\right) $| | |
|$ y\,\gt\,c^{*}+\sigma $| | |$ I_{0}\gg I_{1} $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ ~{}~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
|$ \hat{u}_{0} \gt 0 $|: The parameters satisfy the inequalities: |$ 0 \lt\hat{u}_{0} \lt\hat{u}_{0}+2\sigma \lt c^{*} \lt\sigma+c^{*} \lt\tilde{u}_{0}. $|
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y \lt\hat{u}_{0} $| | |$ \hat{J}_{0}\gg I_{0}= $| | |$ I_{1}/\hat{J}_{0}= $| | |$ u=\tilde{u}_{0}+ $| |
|$ O(I_{1})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0} \lt y \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}\hat{u}_{0}+2\sigma $| | |$ I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0}+2\sigma \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}y\,\lt\,c^{*} $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{t(k^{*}-\sigma)(y-c^{*}-\sigma)}\right) $| | |
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}c^{*}+\sigma $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{-\sigma t(y-\hat{u}_{0}-\sigma)}\right) $| | |
|$ y\,\gt\,c^{*}+\sigma $| | |$ I_{0}\gg I_{1} $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ ~{}~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y \lt\hat{u}_{0} $| | |$ \hat{J}_{0}\gg I_{0}= $| | |$ I_{1}/\hat{J}_{0}= $| | |$ u=\tilde{u}_{0}+ $| |
|$ O(I_{1})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0} \lt y \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}\hat{u}_{0}+2\sigma $| | |$ I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-t(y-\tilde{u}_{0})^{2}/4}\right) $| | |
|$ \hat{u}_{0}+2\sigma \lt $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ I_{1}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}y\,\lt\,c^{*} $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{t(k^{*}-\sigma)(y-c^{*}-\sigma)}\right) $| | |
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ ~{}~{}c^{*}+\sigma $| | |$ ~{}~{}I_{1}\gg L_{0} $| | |$ O\left(\mathrm{e}^{-\sigma t(y-\hat{u}_{0}-\sigma)}\right) $| | |
|$ y\,\gt\,c^{*}+\sigma $| | |$ I_{0}\gg I_{1} $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ ~{}~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.