|$ \hat{u}_{0} \lt 0 $|: The parameters satisfy the inequalities: |$ 0\,\lt\,c^{*} \lt -\hat{u}_{0} \lt\tilde{u}_{0} \lt\hat{u}_{0}+2\sigma. $|
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y\,\lt\,c^{*} $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ L_{0}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{c^{*}t(y-k^{*})}\right) $| | ||
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ L_{0}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad-\hat{u}_{0} $| | |$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{\hat{u}_{0}ty}\right) $| | |
|$ -\hat{u}_{0} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad\tilde{u}_{0} $| | |$ ~{}~{}I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |
|$ \tilde{u}_{0} \lt y \lt $| | |$ I_{0}\gg I_{1}= $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+ $| |
|$ \hat{u}_{0}+2\sigma $| | |$ O(\hat{J}_{0})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| |
|$ y \gt\hat{u}_{0}+2\sigma $| | |$ I_{0}\gg I_{1}\gg $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ \hat{J}_{0}=O(L_{0}) $| | |$ ~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y\,\lt\,c^{*} $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ L_{0}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{c^{*}t(y-k^{*})}\right) $| | ||
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ L_{0}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad-\hat{u}_{0} $| | |$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{\hat{u}_{0}ty}\right) $| | |
|$ -\hat{u}_{0} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad\tilde{u}_{0} $| | |$ ~{}~{}I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |
|$ \tilde{u}_{0} \lt y \lt $| | |$ I_{0}\gg I_{1}= $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+ $| |
|$ \hat{u}_{0}+2\sigma $| | |$ O(\hat{J}_{0})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| |
|$ y \gt\hat{u}_{0}+2\sigma $| | |$ I_{0}\gg I_{1}\gg $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ \hat{J}_{0}=O(L_{0}) $| | |$ ~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
|$ \hat{u}_{0} \lt 0 $|: The parameters satisfy the inequalities: |$ 0\,\lt\,c^{*} \lt -\hat{u}_{0} \lt\tilde{u}_{0} \lt\hat{u}_{0}+2\sigma. $|
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y\,\lt\,c^{*} $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ L_{0}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{c^{*}t(y-k^{*})}\right) $| | ||
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ L_{0}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad-\hat{u}_{0} $| | |$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{\hat{u}_{0}ty}\right) $| | |
|$ -\hat{u}_{0} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad\tilde{u}_{0} $| | |$ ~{}~{}I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |
|$ \tilde{u}_{0} \lt y \lt $| | |$ I_{0}\gg I_{1}= $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+ $| |
|$ \hat{u}_{0}+2\sigma $| | |$ O(\hat{J}_{0})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| |
|$ y \gt\hat{u}_{0}+2\sigma $| | |$ I_{0}\gg I_{1}\gg $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ \hat{J}_{0}=O(L_{0}) $| | |$ ~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
Region . | Most . | Dominant term . | Asymptotics . |
---|---|---|---|
dominant . | in |$ E $| . | ||
terms . | |||
|$ 0\,\lt\,y\,\lt\,c^{*} $| | |$ \hat{J}_{0}\gg I_{0}\gg $| | |$ L_{0}/\hat{J}_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{c^{*}t(y-k^{*})}\right) $| | ||
|$ c^{*} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ L_{0}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad-\hat{u}_{0} $| | |$ L_{0}\gg I_{1} $| | |$ ~{}O\left(\mathrm{e}^{\hat{u}_{0}ty}\right) $| | |
|$ -\hat{u}_{0} \lt y \lt $| | |$ I_{0}\gg\hat{J}_{0}\gg $| | |$ I_{1}/I_{0}= $| | |$ U_{{\rm tw}}+E $| |
|$ \quad\quad\tilde{u}_{0} $| | |$ ~{}~{}I_{1}=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |
|$ \tilde{u}_{0} \lt y \lt $| | |$ I_{0}\gg I_{1}= $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+ $| |
|$ \hat{u}_{0}+2\sigma $| | |$ O(\hat{J}_{0})=O(L_{0}) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| | |$ O\left(t^{-1/2}\mathrm{e}^{-(y-\hat{u}_{0})^{2}t/4}\right) $| |
|$ y \gt\hat{u}_{0}+2\sigma $| | |$ I_{0}\gg I_{1}\gg $| | |$ I_{1}/I_{0}= $| | |$ u=\hat{u}_{0}+u_{\infty}\times $| |
|$ \hat{J}_{0}=O(L_{0}) $| | |$ ~{}O\left(\mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}\right) $| | |$ \mathrm{e}^{-\sigma t(y-\sigma-\hat{u}_{0})}+o(1) $| |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.