Model Performance Using the Selected MPAs Variables to Discriminate EOS vs HC, AOS vs HC, and EOS vs AOS
Training set | Validation set | |||||||
EOS vs HC | EOS vs HC | |||||||
Models | AUC | Accuracy | Sensitivity | Specificity | AUC | Accuracy | Sensitivity | Specificity |
Logistic regression | 0.88 | 0.80 | 0.77 | 0.77 | 0.85 | 0.79 | 0.71 | 0.83 |
Elastic net | 0.88 | 0.78 | 0.80 | 0.77 | 0.85 | 0.78 | 0.75 | 0.76 |
Random forest | 0.91 | 0.80 | 0.83 | 0.79 | 0.90 | 0.82 | 0.84 | 0.81 |
SVM | 0.93 | 0.84 | 0.85 | 0.83 | 0.91 | 0.88 | 0.86 | 0.85 |
XGBoost | 0.94 | 0.85 | 0.86 | 0.84 | 0.93 | 0.86 | 0.87 | 0.85 |
Training set | Validation set | |||||||
EOS vs HC | EOS vs HC | |||||||
Models | AUC | Accuracy | Sensitivity | Specificity | AUC | Accuracy | Sensitivity | Specificity |
Logistic regression | 0.88 | 0.80 | 0.77 | 0.77 | 0.85 | 0.79 | 0.71 | 0.83 |
Elastic net | 0.88 | 0.78 | 0.80 | 0.77 | 0.85 | 0.78 | 0.75 | 0.76 |
Random forest | 0.91 | 0.80 | 0.83 | 0.79 | 0.90 | 0.82 | 0.84 | 0.81 |
SVM | 0.93 | 0.84 | 0.85 | 0.83 | 0.91 | 0.88 | 0.86 | 0.85 |
XGBoost | 0.94 | 0.85 | 0.86 | 0.84 | 0.93 | 0.86 | 0.87 | 0.85 |
AOS vs HC | AOS vs HC | |||||||
Logistic regression | 0.82 | 0.75 | 0.77 | 0.73 | 0.83 | 0.77 | 0.70 | 0.83 |
Elastic net | 0.80 | 0.72 | 0.73 | 0.71 | 0.80 | 0.74 | 0.75 | 0.73 |
Random forest | 0.86 | 0.76 | 0.78 | 0.75 | 0.85 | 0.79 | 0.80 | 0.78 |
SVM | 0.86 | 0.75 | 0.76 | 0.73 | 0.85 | 0.78 | 0.80 | 0.77 |
XGBoost | 0.87 | 0.77 | 0.79 | 0.76 | 0.87 | 0.78 | 0.80 | 0.77 |
AOS vs HC | AOS vs HC | |||||||
Logistic regression | 0.82 | 0.75 | 0.77 | 0.73 | 0.83 | 0.77 | 0.70 | 0.83 |
Elastic net | 0.80 | 0.72 | 0.73 | 0.71 | 0.80 | 0.74 | 0.75 | 0.73 |
Random forest | 0.86 | 0.76 | 0.78 | 0.75 | 0.85 | 0.79 | 0.80 | 0.78 |
SVM | 0.86 | 0.75 | 0.76 | 0.73 | 0.85 | 0.78 | 0.80 | 0.77 |
XGBoost | 0.87 | 0.77 | 0.79 | 0.76 | 0.87 | 0.78 | 0.80 | 0.77 |
EOS vs AOS | EOS vs AOS | |||||||
Logistic regression | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Elastic net | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Random forest | 0.73 | 0.66 | 0.66 | 0.66 | 0.73 | 0.66 | 0.69 | 0.64 |
SVM | 0.75 | 0.68 | 0.71 | 0.66 | 0.74 | 0.69 | 0.71 | 0.68 |
XGBoost | 0.77 | 0.70 | 0.72 | 0.70 | 0.75 | 0.68 | 0.73 | 0.65 |
EOS vs AOS | EOS vs AOS | |||||||
Logistic regression | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Elastic net | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Random forest | 0.73 | 0.66 | 0.66 | 0.66 | 0.73 | 0.66 | 0.69 | 0.64 |
SVM | 0.75 | 0.68 | 0.71 | 0.66 | 0.74 | 0.69 | 0.71 | 0.68 |
XGBoost | 0.77 | 0.70 | 0.72 | 0.70 | 0.75 | 0.68 | 0.73 | 0.65 |
Abbreviations: AOS, adult-onset schizophrenia; EOS, early-onset schizophrenia; HC, healthy controls; SVM, support vector machine; SZ, schizophrenia; XGBoost, eXtreme gradient boosting.
Model Performance Using the Selected MPAs Variables to Discriminate EOS vs HC, AOS vs HC, and EOS vs AOS
Training set | Validation set | |||||||
EOS vs HC | EOS vs HC | |||||||
Models | AUC | Accuracy | Sensitivity | Specificity | AUC | Accuracy | Sensitivity | Specificity |
Logistic regression | 0.88 | 0.80 | 0.77 | 0.77 | 0.85 | 0.79 | 0.71 | 0.83 |
Elastic net | 0.88 | 0.78 | 0.80 | 0.77 | 0.85 | 0.78 | 0.75 | 0.76 |
Random forest | 0.91 | 0.80 | 0.83 | 0.79 | 0.90 | 0.82 | 0.84 | 0.81 |
SVM | 0.93 | 0.84 | 0.85 | 0.83 | 0.91 | 0.88 | 0.86 | 0.85 |
XGBoost | 0.94 | 0.85 | 0.86 | 0.84 | 0.93 | 0.86 | 0.87 | 0.85 |
Training set | Validation set | |||||||
EOS vs HC | EOS vs HC | |||||||
Models | AUC | Accuracy | Sensitivity | Specificity | AUC | Accuracy | Sensitivity | Specificity |
Logistic regression | 0.88 | 0.80 | 0.77 | 0.77 | 0.85 | 0.79 | 0.71 | 0.83 |
Elastic net | 0.88 | 0.78 | 0.80 | 0.77 | 0.85 | 0.78 | 0.75 | 0.76 |
Random forest | 0.91 | 0.80 | 0.83 | 0.79 | 0.90 | 0.82 | 0.84 | 0.81 |
SVM | 0.93 | 0.84 | 0.85 | 0.83 | 0.91 | 0.88 | 0.86 | 0.85 |
XGBoost | 0.94 | 0.85 | 0.86 | 0.84 | 0.93 | 0.86 | 0.87 | 0.85 |
AOS vs HC | AOS vs HC | |||||||
Logistic regression | 0.82 | 0.75 | 0.77 | 0.73 | 0.83 | 0.77 | 0.70 | 0.83 |
Elastic net | 0.80 | 0.72 | 0.73 | 0.71 | 0.80 | 0.74 | 0.75 | 0.73 |
Random forest | 0.86 | 0.76 | 0.78 | 0.75 | 0.85 | 0.79 | 0.80 | 0.78 |
SVM | 0.86 | 0.75 | 0.76 | 0.73 | 0.85 | 0.78 | 0.80 | 0.77 |
XGBoost | 0.87 | 0.77 | 0.79 | 0.76 | 0.87 | 0.78 | 0.80 | 0.77 |
AOS vs HC | AOS vs HC | |||||||
Logistic regression | 0.82 | 0.75 | 0.77 | 0.73 | 0.83 | 0.77 | 0.70 | 0.83 |
Elastic net | 0.80 | 0.72 | 0.73 | 0.71 | 0.80 | 0.74 | 0.75 | 0.73 |
Random forest | 0.86 | 0.76 | 0.78 | 0.75 | 0.85 | 0.79 | 0.80 | 0.78 |
SVM | 0.86 | 0.75 | 0.76 | 0.73 | 0.85 | 0.78 | 0.80 | 0.77 |
XGBoost | 0.87 | 0.77 | 0.79 | 0.76 | 0.87 | 0.78 | 0.80 | 0.77 |
EOS vs AOS | EOS vs AOS | |||||||
Logistic regression | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Elastic net | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Random forest | 0.73 | 0.66 | 0.66 | 0.66 | 0.73 | 0.66 | 0.69 | 0.64 |
SVM | 0.75 | 0.68 | 0.71 | 0.66 | 0.74 | 0.69 | 0.71 | 0.68 |
XGBoost | 0.77 | 0.70 | 0.72 | 0.70 | 0.75 | 0.68 | 0.73 | 0.65 |
EOS vs AOS | EOS vs AOS | |||||||
Logistic regression | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Elastic net | 0.69 | 0.64 | 0.66 | 0.62 | 0.67 | 0.61 | 0.62 | 0.60 |
Random forest | 0.73 | 0.66 | 0.66 | 0.66 | 0.73 | 0.66 | 0.69 | 0.64 |
SVM | 0.75 | 0.68 | 0.71 | 0.66 | 0.74 | 0.69 | 0.71 | 0.68 |
XGBoost | 0.77 | 0.70 | 0.72 | 0.70 | 0.75 | 0.68 | 0.73 | 0.65 |
Abbreviations: AOS, adult-onset schizophrenia; EOS, early-onset schizophrenia; HC, healthy controls; SVM, support vector machine; SZ, schizophrenia; XGBoost, eXtreme gradient boosting.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.