Table 1

Summary of the results of Proposition 3.3.7.

|$\rho (\operatorname{Gal}(\overline{\textbf{k}}/\textbf{k})) \subset \operatorname{Sym}_{5}$||$\Gamma \simeq \operatorname{Gal}(L/\textbf{k})$||$G=\operatorname{Aut}_{\textbf{k}}(X)$|
2e|$\langle (12)(34) \rangle \times \langle (13)(24) \rangle $||$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \times \langle \widehat{\beta } \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| and |$\widehat{\beta }$| are the lifts of involutions of |$\mathbb{P}^{2}$|
2g|$\langle (1234) \rangle $||$\mathbb{Z}/4\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/4\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an automorphism of |$\mathbb{P}^{2}$| of order four
2i|$\langle (1234),(13) \rangle $||$\operatorname{D}_{4}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an involution of |$\mathbb{P}^{2}$|
2h|$\langle (12)(34),(123) \rangle $||$\mathcal{A}_{4}$||$\lbrace \operatorname{id} \rbrace $|
2j|$\langle (1234),(12) \rangle $||$\operatorname{Sym}_{4}$||$\lbrace \operatorname{id} \rbrace $|
|$\rho (\operatorname{Gal}(\overline{\textbf{k}}/\textbf{k})) \subset \operatorname{Sym}_{5}$||$\Gamma \simeq \operatorname{Gal}(L/\textbf{k})$||$G=\operatorname{Aut}_{\textbf{k}}(X)$|
2e|$\langle (12)(34) \rangle \times \langle (13)(24) \rangle $||$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \times \langle \widehat{\beta } \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| and |$\widehat{\beta }$| are the lifts of involutions of |$\mathbb{P}^{2}$|
2g|$\langle (1234) \rangle $||$\mathbb{Z}/4\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/4\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an automorphism of |$\mathbb{P}^{2}$| of order four
2i|$\langle (1234),(13) \rangle $||$\operatorname{D}_{4}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an involution of |$\mathbb{P}^{2}$|
2h|$\langle (12)(34),(123) \rangle $||$\mathcal{A}_{4}$||$\lbrace \operatorname{id} \rbrace $|
2j|$\langle (1234),(12) \rangle $||$\operatorname{Sym}_{4}$||$\lbrace \operatorname{id} \rbrace $|
Table 1

Summary of the results of Proposition 3.3.7.

|$\rho (\operatorname{Gal}(\overline{\textbf{k}}/\textbf{k})) \subset \operatorname{Sym}_{5}$||$\Gamma \simeq \operatorname{Gal}(L/\textbf{k})$||$G=\operatorname{Aut}_{\textbf{k}}(X)$|
2e|$\langle (12)(34) \rangle \times \langle (13)(24) \rangle $||$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \times \langle \widehat{\beta } \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| and |$\widehat{\beta }$| are the lifts of involutions of |$\mathbb{P}^{2}$|
2g|$\langle (1234) \rangle $||$\mathbb{Z}/4\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/4\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an automorphism of |$\mathbb{P}^{2}$| of order four
2i|$\langle (1234),(13) \rangle $||$\operatorname{D}_{4}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an involution of |$\mathbb{P}^{2}$|
2h|$\langle (12)(34),(123) \rangle $||$\mathcal{A}_{4}$||$\lbrace \operatorname{id} \rbrace $|
2j|$\langle (1234),(12) \rangle $||$\operatorname{Sym}_{4}$||$\lbrace \operatorname{id} \rbrace $|
|$\rho (\operatorname{Gal}(\overline{\textbf{k}}/\textbf{k})) \subset \operatorname{Sym}_{5}$||$\Gamma \simeq \operatorname{Gal}(L/\textbf{k})$||$G=\operatorname{Aut}_{\textbf{k}}(X)$|
2e|$\langle (12)(34) \rangle \times \langle (13)(24) \rangle $||$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \times \langle \widehat{\beta } \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| and |$\widehat{\beta }$| are the lifts of involutions of |$\mathbb{P}^{2}$|
2g|$\langle (1234) \rangle $||$\mathbb{Z}/4\mathbb{Z}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/4\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an automorphism of |$\mathbb{P}^{2}$| of order four
2i|$\langle (1234),(13) \rangle $||$\operatorname{D}_{4}$||$\langle \widehat{\alpha } \rangle \simeq \mathbb{Z}/2\mathbb{Z}$|⁠, where |$\widehat{\alpha }$| is the lift of an involution of |$\mathbb{P}^{2}$|
2h|$\langle (12)(34),(123) \rangle $||$\mathcal{A}_{4}$||$\lbrace \operatorname{id} \rbrace $|
2j|$\langle (1234),(12) \rangle $||$\operatorname{Sym}_{4}$||$\lbrace \operatorname{id} \rbrace $|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close