Table 4.

Computation of index, underlying topological space, number of vertex points and number of S1 in the orbifolds in families 8–14 of Table 3. Some spaces are left blank, since those invariants are not necessary in the proof of Theorem B. The index |$|\pi_1(\mathcal{O}):N|$| is computed for the maximal normal abelian subgroup N, when it is unique.

 Fibrations|$|\pi_1(\mathcal{O}):N|$||$|\mathcal{O}|$|Number of vertex pointsNumber of circles in |$\Sigma_{\mathcal{O}}$|
8|$(2_02_0n_0)$|
|$(2_12_1n_0)$|
|$(2_02_1n_{n/2})$|
$\begin{cases}1\,\,\,\text{if }n=2 \\ 2\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^2\times S^1$|
|$S^2\times S^1$|
|$S^2\times S^1$|
3
1
2
9|$(\ast_02_02_0n_0)$|
|$(\ast_12_12_1n_0)$||$(\ast_12_02_1n_{n/2})$|
$\begin{cases}2\,\,\,\text{if }n=2\\ 4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$S^3$|
|$S^3$|
6
2
4
10|$(2_0\ast_0n_0)$|
|$(2_1\ast_1n_0)$|
$\begin{cases}2\,\,\,\text{if }n=2\\4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$\mathbb{R} P^3$|
2
2
11|$(n_0n_0)$|1|$S^2\times S^1$|
$\begin{cases}0\,\text{if }n=1\\2\,\text{if }n\not=1\end{cases}$
12|$(\ast_0n_0n_0)$|2S3
$\begin{cases}0\,\text{ if }n=1\\4\,\text{ if }n\not=1\end{cases}$
$\begin{cases}2\,\text{if }n=1\\0\,\text{if }n\not=1\end{cases}$
13|$(n_0\ast_0)$|
|$(n_{(n/2)}\ast_1)$|
2|$S^3$|
|$\mathbb{R} P^3$|
0
0
3
2
14|$(n_0\overline\times)$|2|$\mathbb{R} P^3\#\mathbb{R} P^3$|
 Fibrations|$|\pi_1(\mathcal{O}):N|$||$|\mathcal{O}|$|Number of vertex pointsNumber of circles in |$\Sigma_{\mathcal{O}}$|
8|$(2_02_0n_0)$|
|$(2_12_1n_0)$|
|$(2_02_1n_{n/2})$|
$\begin{cases}1\,\,\,\text{if }n=2 \\ 2\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^2\times S^1$|
|$S^2\times S^1$|
|$S^2\times S^1$|
3
1
2
9|$(\ast_02_02_0n_0)$|
|$(\ast_12_12_1n_0)$||$(\ast_12_02_1n_{n/2})$|
$\begin{cases}2\,\,\,\text{if }n=2\\ 4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$S^3$|
|$S^3$|
6
2
4
10|$(2_0\ast_0n_0)$|
|$(2_1\ast_1n_0)$|
$\begin{cases}2\,\,\,\text{if }n=2\\4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$\mathbb{R} P^3$|
2
2
11|$(n_0n_0)$|1|$S^2\times S^1$|
$\begin{cases}0\,\text{if }n=1\\2\,\text{if }n\not=1\end{cases}$
12|$(\ast_0n_0n_0)$|2S3
$\begin{cases}0\,\text{ if }n=1\\4\,\text{ if }n\not=1\end{cases}$
$\begin{cases}2\,\text{if }n=1\\0\,\text{if }n\not=1\end{cases}$
13|$(n_0\ast_0)$|
|$(n_{(n/2)}\ast_1)$|
2|$S^3$|
|$\mathbb{R} P^3$|
0
0
3
2
14|$(n_0\overline\times)$|2|$\mathbb{R} P^3\#\mathbb{R} P^3$|
Table 4.

Computation of index, underlying topological space, number of vertex points and number of S1 in the orbifolds in families 8–14 of Table 3. Some spaces are left blank, since those invariants are not necessary in the proof of Theorem B. The index |$|\pi_1(\mathcal{O}):N|$| is computed for the maximal normal abelian subgroup N, when it is unique.

 Fibrations|$|\pi_1(\mathcal{O}):N|$||$|\mathcal{O}|$|Number of vertex pointsNumber of circles in |$\Sigma_{\mathcal{O}}$|
8|$(2_02_0n_0)$|
|$(2_12_1n_0)$|
|$(2_02_1n_{n/2})$|
$\begin{cases}1\,\,\,\text{if }n=2 \\ 2\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^2\times S^1$|
|$S^2\times S^1$|
|$S^2\times S^1$|
3
1
2
9|$(\ast_02_02_0n_0)$|
|$(\ast_12_12_1n_0)$||$(\ast_12_02_1n_{n/2})$|
$\begin{cases}2\,\,\,\text{if }n=2\\ 4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$S^3$|
|$S^3$|
6
2
4
10|$(2_0\ast_0n_0)$|
|$(2_1\ast_1n_0)$|
$\begin{cases}2\,\,\,\text{if }n=2\\4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$\mathbb{R} P^3$|
2
2
11|$(n_0n_0)$|1|$S^2\times S^1$|
$\begin{cases}0\,\text{if }n=1\\2\,\text{if }n\not=1\end{cases}$
12|$(\ast_0n_0n_0)$|2S3
$\begin{cases}0\,\text{ if }n=1\\4\,\text{ if }n\not=1\end{cases}$
$\begin{cases}2\,\text{if }n=1\\0\,\text{if }n\not=1\end{cases}$
13|$(n_0\ast_0)$|
|$(n_{(n/2)}\ast_1)$|
2|$S^3$|
|$\mathbb{R} P^3$|
0
0
3
2
14|$(n_0\overline\times)$|2|$\mathbb{R} P^3\#\mathbb{R} P^3$|
 Fibrations|$|\pi_1(\mathcal{O}):N|$||$|\mathcal{O}|$|Number of vertex pointsNumber of circles in |$\Sigma_{\mathcal{O}}$|
8|$(2_02_0n_0)$|
|$(2_12_1n_0)$|
|$(2_02_1n_{n/2})$|
$\begin{cases}1\,\,\,\text{if }n=2 \\ 2\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^2\times S^1$|
|$S^2\times S^1$|
|$S^2\times S^1$|
3
1
2
9|$(\ast_02_02_0n_0)$|
|$(\ast_12_12_1n_0)$||$(\ast_12_02_1n_{n/2})$|
$\begin{cases}2\,\,\,\text{if }n=2\\ 4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$S^3$|
|$S^3$|
6
2
4
10|$(2_0\ast_0n_0)$|
|$(2_1\ast_1n_0)$|
$\begin{cases}2\,\,\,\text{if }n=2\\4\,\,\,\text{if }n\not\in\{2,4\}\end{cases}$
|$S^3$|
|$\mathbb{R} P^3$|
2
2
11|$(n_0n_0)$|1|$S^2\times S^1$|
$\begin{cases}0\,\text{if }n=1\\2\,\text{if }n\not=1\end{cases}$
12|$(\ast_0n_0n_0)$|2S3
$\begin{cases}0\,\text{ if }n=1\\4\,\text{ if }n\not=1\end{cases}$
$\begin{cases}2\,\text{if }n=1\\0\,\text{if }n\not=1\end{cases}$
13|$(n_0\ast_0)$|
|$(n_{(n/2)}\ast_1)$|
2|$S^3$|
|$\mathbb{R} P^3$|
0
0
3
2
14|$(n_0\overline\times)$|2|$\mathbb{R} P^3\#\mathbb{R} P^3$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close