Table 1.

Hierarchical logistic regressions of beneficial online activities based on in-home internet, computer, and smartphone access.

2021
2023
BSEWaldpORBSEWaldpOR
a. Outcome Variable: Job Searches
Yes = 6,484; No = 30,075Yes = 6,167; No = 30,481
Step 1: Sociodemographic Controlsχ²(22) = 4292.55, p < .001; Nagelkerke R2 = .18χ²(22) = 4400.28, p < .001; Nagelkerke R2 = .19
Step 2: Access VariablesΔχ2(3) = 62.00, p < .001; ΔNagelkerke R2 = .003Δχ2(3) = 47.05, p < .001; ΔNagelkerke R2 = .002
 Home Internet0.13*0.055.22.021.130.010.050.05.821.01
 Computer0.28***0.0532.12<.0011.320.31***0.0540.66<.0011.37
 Smartphone0.15*0.084.22.041.170.030.080.13.721.03
b. Outcome Variable: Government Resources
Yes = 13,868; No = 22,691Yes = 14,436; No = 22,212
Step 1: Sociodemographic Controlsχ²(22) = 2301.51, p < .001; Nagelkerke R2 = .08χ²(22) = 2848.79, p < .001; Nagelkerke R2 = .10
Step 2: Access VariablesΔχ2(3) = 344.16, p < .001; ΔNagelkerke R2 = .01Δχ2(3) = 382.80, p < .001; ΔNagelkerke R2 = .01
 Home Internet0.32***0.0456.89<.0011.370.34***0.0463.22<.0011.40
 Computer0.43***0.04139.39<.0011.540.50***0.04198.55<.0011.64
 Smartphone0.27***0.0529.14<.0011.300.18**0.0610.61.0011.20
c. Outcome Variable: Health Information Seeking
Yes = 39,737; No = 33,237Yes = 41,616; No = 31,713
Step 1: Sociodemographic Controlsχ²(22) = 5634.41, p < .001; Nagelkerke R2 = .10χ²(22) = 6301.29, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1553.08, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1663.76 p < .001; ΔNagelkerke R2 = .03
 Home Internet0.48***0.03274.57<.0011.610.52***0.03323.87<.0011.68
 Computer0.62***0.03626.19<.0011.860.65***0.02767.83<.0011.92
 Smartphone0.35***0.03108.33<.0011.420.33***0.0475.67<.0011.39
d. Outcome Variable: Patient-Provider Communication
Yes = 35,897; No = 37,077Yes = 38,197; No = 35,132
Step 1: Sociodemographic Controlsχ²(22) = 5787.80, p < .001; Nagelkerke R2 = .10χ²(22) = 5983.24, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1533.87, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1768.45, p < .001; ΔNagelkerke R2 = .03
 Home Internet0.54***0.03326.75<.0011.720.60***0.03388.15<.0011.81
 Computer0.52***0.03414.83<.0011.680.67***0.02764.44<.0011.95
 Smartphone0.55***0.04240.95<.0011.730.31***0.0464.92<.0011.37
e. Outcome Variable: Medical Records
Yes = 39,651; No = 33,323Yes = 44,543; No = 28,786
Step 1: Sociodemographic Controlsχ²(22) = 9050.82, p < .001; NagelkerkeR2 = .16χ²(22) = 9049.09, p < .001; Nagelkerke R2 = .16
Step 2: Access VariablesΔχ2(3) = 2022.84, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 2252.79 p < .001; ΔNagelkerke  R2 = .04
 Home Internet0.59***0.03382.16<.0011.800.62***0.03443.36<.0011.86
 Computer0.70***0.03740.81<.0012.020.77***0.021046.44<.0012.16
 Smartphone0.47***0.04177.86<.0011.590.38***0.0498.71<.0011.47
2021
2023
BSEWaldpORBSEWaldpOR
a. Outcome Variable: Job Searches
Yes = 6,484; No = 30,075Yes = 6,167; No = 30,481
Step 1: Sociodemographic Controlsχ²(22) = 4292.55, p < .001; Nagelkerke R2 = .18χ²(22) = 4400.28, p < .001; Nagelkerke R2 = .19
Step 2: Access VariablesΔχ2(3) = 62.00, p < .001; ΔNagelkerke R2 = .003Δχ2(3) = 47.05, p < .001; ΔNagelkerke R2 = .002
 Home Internet0.13*0.055.22.021.130.010.050.05.821.01
 Computer0.28***0.0532.12<.0011.320.31***0.0540.66<.0011.37
 Smartphone0.15*0.084.22.041.170.030.080.13.721.03
b. Outcome Variable: Government Resources
Yes = 13,868; No = 22,691Yes = 14,436; No = 22,212
Step 1: Sociodemographic Controlsχ²(22) = 2301.51, p < .001; Nagelkerke R2 = .08χ²(22) = 2848.79, p < .001; Nagelkerke R2 = .10
Step 2: Access VariablesΔχ2(3) = 344.16, p < .001; ΔNagelkerke R2 = .01Δχ2(3) = 382.80, p < .001; ΔNagelkerke R2 = .01
 Home Internet0.32***0.0456.89<.0011.370.34***0.0463.22<.0011.40
 Computer0.43***0.04139.39<.0011.540.50***0.04198.55<.0011.64
 Smartphone0.27***0.0529.14<.0011.300.18**0.0610.61.0011.20
c. Outcome Variable: Health Information Seeking
Yes = 39,737; No = 33,237Yes = 41,616; No = 31,713
Step 1: Sociodemographic Controlsχ²(22) = 5634.41, p < .001; Nagelkerke R2 = .10χ²(22) = 6301.29, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1553.08, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1663.76 p < .001; ΔNagelkerke R2 = .03
 Home Internet0.48***0.03274.57<.0011.610.52***0.03323.87<.0011.68
 Computer0.62***0.03626.19<.0011.860.65***0.02767.83<.0011.92
 Smartphone0.35***0.03108.33<.0011.420.33***0.0475.67<.0011.39
d. Outcome Variable: Patient-Provider Communication
Yes = 35,897; No = 37,077Yes = 38,197; No = 35,132
Step 1: Sociodemographic Controlsχ²(22) = 5787.80, p < .001; Nagelkerke R2 = .10χ²(22) = 5983.24, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1533.87, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1768.45, p < .001; ΔNagelkerke R2 = .03
 Home Internet0.54***0.03326.75<.0011.720.60***0.03388.15<.0011.81
 Computer0.52***0.03414.83<.0011.680.67***0.02764.44<.0011.95
 Smartphone0.55***0.04240.95<.0011.730.31***0.0464.92<.0011.37
e. Outcome Variable: Medical Records
Yes = 39,651; No = 33,323Yes = 44,543; No = 28,786
Step 1: Sociodemographic Controlsχ²(22) = 9050.82, p < .001; NagelkerkeR2 = .16χ²(22) = 9049.09, p < .001; Nagelkerke R2 = .16
Step 2: Access VariablesΔχ2(3) = 2022.84, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 2252.79 p < .001; ΔNagelkerke  R2 = .04
 Home Internet0.59***0.03382.16<.0011.800.62***0.03443.36<.0011.86
 Computer0.70***0.03740.81<.0012.020.77***0.021046.44<.0012.16
 Smartphone0.47***0.04177.86<.0011.590.38***0.0498.71<.0011.47

Note. All statistically significant tests are in bold text. The impact of each type of access was tested together in combined models for every beneficial activity after controlling for sociodemographic factors.

*

p < .05.

**

p < .01.

***

p < .001.

Table 1.

Hierarchical logistic regressions of beneficial online activities based on in-home internet, computer, and smartphone access.

2021
2023
BSEWaldpORBSEWaldpOR
a. Outcome Variable: Job Searches
Yes = 6,484; No = 30,075Yes = 6,167; No = 30,481
Step 1: Sociodemographic Controlsχ²(22) = 4292.55, p < .001; Nagelkerke R2 = .18χ²(22) = 4400.28, p < .001; Nagelkerke R2 = .19
Step 2: Access VariablesΔχ2(3) = 62.00, p < .001; ΔNagelkerke R2 = .003Δχ2(3) = 47.05, p < .001; ΔNagelkerke R2 = .002
 Home Internet0.13*0.055.22.021.130.010.050.05.821.01
 Computer0.28***0.0532.12<.0011.320.31***0.0540.66<.0011.37
 Smartphone0.15*0.084.22.041.170.030.080.13.721.03
b. Outcome Variable: Government Resources
Yes = 13,868; No = 22,691Yes = 14,436; No = 22,212
Step 1: Sociodemographic Controlsχ²(22) = 2301.51, p < .001; Nagelkerke R2 = .08χ²(22) = 2848.79, p < .001; Nagelkerke R2 = .10
Step 2: Access VariablesΔχ2(3) = 344.16, p < .001; ΔNagelkerke R2 = .01Δχ2(3) = 382.80, p < .001; ΔNagelkerke R2 = .01
 Home Internet0.32***0.0456.89<.0011.370.34***0.0463.22<.0011.40
 Computer0.43***0.04139.39<.0011.540.50***0.04198.55<.0011.64
 Smartphone0.27***0.0529.14<.0011.300.18**0.0610.61.0011.20
c. Outcome Variable: Health Information Seeking
Yes = 39,737; No = 33,237Yes = 41,616; No = 31,713
Step 1: Sociodemographic Controlsχ²(22) = 5634.41, p < .001; Nagelkerke R2 = .10χ²(22) = 6301.29, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1553.08, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1663.76 p < .001; ΔNagelkerke R2 = .03
 Home Internet0.48***0.03274.57<.0011.610.52***0.03323.87<.0011.68
 Computer0.62***0.03626.19<.0011.860.65***0.02767.83<.0011.92
 Smartphone0.35***0.03108.33<.0011.420.33***0.0475.67<.0011.39
d. Outcome Variable: Patient-Provider Communication
Yes = 35,897; No = 37,077Yes = 38,197; No = 35,132
Step 1: Sociodemographic Controlsχ²(22) = 5787.80, p < .001; Nagelkerke R2 = .10χ²(22) = 5983.24, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1533.87, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1768.45, p < .001; ΔNagelkerke R2 = .03
 Home Internet0.54***0.03326.75<.0011.720.60***0.03388.15<.0011.81
 Computer0.52***0.03414.83<.0011.680.67***0.02764.44<.0011.95
 Smartphone0.55***0.04240.95<.0011.730.31***0.0464.92<.0011.37
e. Outcome Variable: Medical Records
Yes = 39,651; No = 33,323Yes = 44,543; No = 28,786
Step 1: Sociodemographic Controlsχ²(22) = 9050.82, p < .001; NagelkerkeR2 = .16χ²(22) = 9049.09, p < .001; Nagelkerke R2 = .16
Step 2: Access VariablesΔχ2(3) = 2022.84, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 2252.79 p < .001; ΔNagelkerke  R2 = .04
 Home Internet0.59***0.03382.16<.0011.800.62***0.03443.36<.0011.86
 Computer0.70***0.03740.81<.0012.020.77***0.021046.44<.0012.16
 Smartphone0.47***0.04177.86<.0011.590.38***0.0498.71<.0011.47
2021
2023
BSEWaldpORBSEWaldpOR
a. Outcome Variable: Job Searches
Yes = 6,484; No = 30,075Yes = 6,167; No = 30,481
Step 1: Sociodemographic Controlsχ²(22) = 4292.55, p < .001; Nagelkerke R2 = .18χ²(22) = 4400.28, p < .001; Nagelkerke R2 = .19
Step 2: Access VariablesΔχ2(3) = 62.00, p < .001; ΔNagelkerke R2 = .003Δχ2(3) = 47.05, p < .001; ΔNagelkerke R2 = .002
 Home Internet0.13*0.055.22.021.130.010.050.05.821.01
 Computer0.28***0.0532.12<.0011.320.31***0.0540.66<.0011.37
 Smartphone0.15*0.084.22.041.170.030.080.13.721.03
b. Outcome Variable: Government Resources
Yes = 13,868; No = 22,691Yes = 14,436; No = 22,212
Step 1: Sociodemographic Controlsχ²(22) = 2301.51, p < .001; Nagelkerke R2 = .08χ²(22) = 2848.79, p < .001; Nagelkerke R2 = .10
Step 2: Access VariablesΔχ2(3) = 344.16, p < .001; ΔNagelkerke R2 = .01Δχ2(3) = 382.80, p < .001; ΔNagelkerke R2 = .01
 Home Internet0.32***0.0456.89<.0011.370.34***0.0463.22<.0011.40
 Computer0.43***0.04139.39<.0011.540.50***0.04198.55<.0011.64
 Smartphone0.27***0.0529.14<.0011.300.18**0.0610.61.0011.20
c. Outcome Variable: Health Information Seeking
Yes = 39,737; No = 33,237Yes = 41,616; No = 31,713
Step 1: Sociodemographic Controlsχ²(22) = 5634.41, p < .001; Nagelkerke R2 = .10χ²(22) = 6301.29, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1553.08, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1663.76 p < .001; ΔNagelkerke R2 = .03
 Home Internet0.48***0.03274.57<.0011.610.52***0.03323.87<.0011.68
 Computer0.62***0.03626.19<.0011.860.65***0.02767.83<.0011.92
 Smartphone0.35***0.03108.33<.0011.420.33***0.0475.67<.0011.39
d. Outcome Variable: Patient-Provider Communication
Yes = 35,897; No = 37,077Yes = 38,197; No = 35,132
Step 1: Sociodemographic Controlsχ²(22) = 5787.80, p < .001; Nagelkerke R2 = .10χ²(22) = 5983.24, p < .001; Nagelkerke R2 = .11
Step 2: Access VariablesΔχ2(3) = 1533.87, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 1768.45, p < .001; ΔNagelkerke R2 = .03
 Home Internet0.54***0.03326.75<.0011.720.60***0.03388.15<.0011.81
 Computer0.52***0.03414.83<.0011.680.67***0.02764.44<.0011.95
 Smartphone0.55***0.04240.95<.0011.730.31***0.0464.92<.0011.37
e. Outcome Variable: Medical Records
Yes = 39,651; No = 33,323Yes = 44,543; No = 28,786
Step 1: Sociodemographic Controlsχ²(22) = 9050.82, p < .001; NagelkerkeR2 = .16χ²(22) = 9049.09, p < .001; Nagelkerke R2 = .16
Step 2: Access VariablesΔχ2(3) = 2022.84, p < .001; ΔNagelkerke R2 = .03Δχ2(3) = 2252.79 p < .001; ΔNagelkerke  R2 = .04
 Home Internet0.59***0.03382.16<.0011.800.62***0.03443.36<.0011.86
 Computer0.70***0.03740.81<.0012.020.77***0.021046.44<.0012.16
 Smartphone0.47***0.04177.86<.0011.590.38***0.0498.71<.0011.47

Note. All statistically significant tests are in bold text. The impact of each type of access was tested together in combined models for every beneficial activity after controlling for sociodemographic factors.

*

p < .05.

**

p < .01.

***

p < .001.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close