Table C2.

Averages and |$1\sigma _{\rm std}$| of the normalized |$\log \alpha _0$|⁠, |$\nu _{\rm char}$|⁠, |$\gamma$|⁠, |$\log {\rm RMS}$|⁠, |$\nu _{50~{{\ \rm per\ cent}}}$|⁠, and w parameters obtained after resampling the 2-min cadence data to 240 s, 10 min, and 30 min. The parameters were normalized by their corresponding 2-min cadence estimates before their averages and standard deviations across all stars and sectors were calculated. Values given in parentheses are the same results obtained after (a) excluding |$\eta (\nu)$| from equation (2), and (b) limiting the sample to stars and sectors with |$\nu _{50~{{\ \rm per\ cent}}} < 50\ \mu$|Hz and |$w < 12$|⁠.

 240 s|${\rm 10 min}$||${\rm 30 min}$|
|$\frac{\log \alpha _0}{\log \alpha _0 {\rm [2min]}}$||$0.999 \pm 0.012$||$0.995 \pm 0.029$||$1.000 \pm 0.044$|
 (⁠|$0.998 \pm 0.012)^a$|(⁠|$0.994 \pm 0.028)^a$|(⁠|$0.995 \pm 0.038)^a$|
|$\frac{\nu _{\rm char}}{\nu _{\rm char} {\rm [2min]}}$||$1.042 \pm 0.212$||$1.285 \pm 0.87$||$1.354 \pm 1.103$|
 (⁠|$1.047 \pm 0.212)^a$|(⁠|$1.298 \pm 0.87)^a$|(⁠|$1.410 \pm 1.113)^a$|
|$\frac{\gamma }{\gamma {\rm [2min]}}$||$1.007 \pm 0.060$||$1.056 \pm 0.194$||$1.052 \pm 0.287$|
 (⁠|$1.010 \pm 0.061)^a$|(⁠|$1.067 \pm 0.193)^a$|(⁠|$1.101 \pm 0.272)^a$|
|$\frac{\log {\rm RMS}}{\log {\rm RMS} {\rm [2min]}}$||$0.992 \pm 0.014$||$0.984 \pm 0.029$||$0.976 \pm 0.042$|
 (⁠|$0.995 \pm 0.008)^b$|(⁠|$0.991 \pm 0.015)^b$|(⁠|$0.987 \pm 0.024)^b$|
|$\frac{\nu _{50~{{\ \rm per\ cent}}}}{\nu _{50~{{\ \rm per\ cent}}} {\rm [2min]}}$||$1.002 \pm 0.055$||$1.006 \pm 0.054$|
 (⁠|$0.996 \pm 0.031)^b$|(⁠|$1.000 \pm 0.043)^b$|
|$\frac{w}{w {\rm [2min]}}$||$0.999 \pm 0.041$||$0.998 \pm 0.121$|
 (⁠|$1.002 \pm 0.031)^b$|(⁠|$0.994 \pm 0.086)^b$|
 240 s|${\rm 10 min}$||${\rm 30 min}$|
|$\frac{\log \alpha _0}{\log \alpha _0 {\rm [2min]}}$||$0.999 \pm 0.012$||$0.995 \pm 0.029$||$1.000 \pm 0.044$|
 (⁠|$0.998 \pm 0.012)^a$|(⁠|$0.994 \pm 0.028)^a$|(⁠|$0.995 \pm 0.038)^a$|
|$\frac{\nu _{\rm char}}{\nu _{\rm char} {\rm [2min]}}$||$1.042 \pm 0.212$||$1.285 \pm 0.87$||$1.354 \pm 1.103$|
 (⁠|$1.047 \pm 0.212)^a$|(⁠|$1.298 \pm 0.87)^a$|(⁠|$1.410 \pm 1.113)^a$|
|$\frac{\gamma }{\gamma {\rm [2min]}}$||$1.007 \pm 0.060$||$1.056 \pm 0.194$||$1.052 \pm 0.287$|
 (⁠|$1.010 \pm 0.061)^a$|(⁠|$1.067 \pm 0.193)^a$|(⁠|$1.101 \pm 0.272)^a$|
|$\frac{\log {\rm RMS}}{\log {\rm RMS} {\rm [2min]}}$||$0.992 \pm 0.014$||$0.984 \pm 0.029$||$0.976 \pm 0.042$|
 (⁠|$0.995 \pm 0.008)^b$|(⁠|$0.991 \pm 0.015)^b$|(⁠|$0.987 \pm 0.024)^b$|
|$\frac{\nu _{50~{{\ \rm per\ cent}}}}{\nu _{50~{{\ \rm per\ cent}}} {\rm [2min]}}$||$1.002 \pm 0.055$||$1.006 \pm 0.054$|
 (⁠|$0.996 \pm 0.031)^b$|(⁠|$1.000 \pm 0.043)^b$|
|$\frac{w}{w {\rm [2min]}}$||$0.999 \pm 0.041$||$0.998 \pm 0.121$|
 (⁠|$1.002 \pm 0.031)^b$|(⁠|$0.994 \pm 0.086)^b$|
Table C2.

Averages and |$1\sigma _{\rm std}$| of the normalized |$\log \alpha _0$|⁠, |$\nu _{\rm char}$|⁠, |$\gamma$|⁠, |$\log {\rm RMS}$|⁠, |$\nu _{50~{{\ \rm per\ cent}}}$|⁠, and w parameters obtained after resampling the 2-min cadence data to 240 s, 10 min, and 30 min. The parameters were normalized by their corresponding 2-min cadence estimates before their averages and standard deviations across all stars and sectors were calculated. Values given in parentheses are the same results obtained after (a) excluding |$\eta (\nu)$| from equation (2), and (b) limiting the sample to stars and sectors with |$\nu _{50~{{\ \rm per\ cent}}} < 50\ \mu$|Hz and |$w < 12$|⁠.

 240 s|${\rm 10 min}$||${\rm 30 min}$|
|$\frac{\log \alpha _0}{\log \alpha _0 {\rm [2min]}}$||$0.999 \pm 0.012$||$0.995 \pm 0.029$||$1.000 \pm 0.044$|
 (⁠|$0.998 \pm 0.012)^a$|(⁠|$0.994 \pm 0.028)^a$|(⁠|$0.995 \pm 0.038)^a$|
|$\frac{\nu _{\rm char}}{\nu _{\rm char} {\rm [2min]}}$||$1.042 \pm 0.212$||$1.285 \pm 0.87$||$1.354 \pm 1.103$|
 (⁠|$1.047 \pm 0.212)^a$|(⁠|$1.298 \pm 0.87)^a$|(⁠|$1.410 \pm 1.113)^a$|
|$\frac{\gamma }{\gamma {\rm [2min]}}$||$1.007 \pm 0.060$||$1.056 \pm 0.194$||$1.052 \pm 0.287$|
 (⁠|$1.010 \pm 0.061)^a$|(⁠|$1.067 \pm 0.193)^a$|(⁠|$1.101 \pm 0.272)^a$|
|$\frac{\log {\rm RMS}}{\log {\rm RMS} {\rm [2min]}}$||$0.992 \pm 0.014$||$0.984 \pm 0.029$||$0.976 \pm 0.042$|
 (⁠|$0.995 \pm 0.008)^b$|(⁠|$0.991 \pm 0.015)^b$|(⁠|$0.987 \pm 0.024)^b$|
|$\frac{\nu _{50~{{\ \rm per\ cent}}}}{\nu _{50~{{\ \rm per\ cent}}} {\rm [2min]}}$||$1.002 \pm 0.055$||$1.006 \pm 0.054$|
 (⁠|$0.996 \pm 0.031)^b$|(⁠|$1.000 \pm 0.043)^b$|
|$\frac{w}{w {\rm [2min]}}$||$0.999 \pm 0.041$||$0.998 \pm 0.121$|
 (⁠|$1.002 \pm 0.031)^b$|(⁠|$0.994 \pm 0.086)^b$|
 240 s|${\rm 10 min}$||${\rm 30 min}$|
|$\frac{\log \alpha _0}{\log \alpha _0 {\rm [2min]}}$||$0.999 \pm 0.012$||$0.995 \pm 0.029$||$1.000 \pm 0.044$|
 (⁠|$0.998 \pm 0.012)^a$|(⁠|$0.994 \pm 0.028)^a$|(⁠|$0.995 \pm 0.038)^a$|
|$\frac{\nu _{\rm char}}{\nu _{\rm char} {\rm [2min]}}$||$1.042 \pm 0.212$||$1.285 \pm 0.87$||$1.354 \pm 1.103$|
 (⁠|$1.047 \pm 0.212)^a$|(⁠|$1.298 \pm 0.87)^a$|(⁠|$1.410 \pm 1.113)^a$|
|$\frac{\gamma }{\gamma {\rm [2min]}}$||$1.007 \pm 0.060$||$1.056 \pm 0.194$||$1.052 \pm 0.287$|
 (⁠|$1.010 \pm 0.061)^a$|(⁠|$1.067 \pm 0.193)^a$|(⁠|$1.101 \pm 0.272)^a$|
|$\frac{\log {\rm RMS}}{\log {\rm RMS} {\rm [2min]}}$||$0.992 \pm 0.014$||$0.984 \pm 0.029$||$0.976 \pm 0.042$|
 (⁠|$0.995 \pm 0.008)^b$|(⁠|$0.991 \pm 0.015)^b$|(⁠|$0.987 \pm 0.024)^b$|
|$\frac{\nu _{50~{{\ \rm per\ cent}}}}{\nu _{50~{{\ \rm per\ cent}}} {\rm [2min]}}$||$1.002 \pm 0.055$||$1.006 \pm 0.054$|
 (⁠|$0.996 \pm 0.031)^b$|(⁠|$1.000 \pm 0.043)^b$|
|$\frac{w}{w {\rm [2min]}}$||$0.999 \pm 0.041$||$0.998 \pm 0.121$|
 (⁠|$1.002 \pm 0.031)^b$|(⁠|$0.994 \pm 0.086)^b$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close