Abstract

Motivation

Protein identification via mass spectrometry (MS) is the primary method for untargeted protein detection. However, the identification process is challenging due to data complexity and the need to control false discovery rates (FDR) of protein identification. To address these challenges, we developed a graph neural network (GNN)-based model, Graph Neural Network using Protein-Protein Interaction for Enhancing Protein Identification (Grape-Pi), which is applicable to all proteomics pipelines. This model leverages protein-protein interaction (PPI) data and employs two types of message-passing layers to integrate evidence from both the target protein and its interactors, thereby improving identification accuracy.

Results

Grape-Pi achieved significant improvements in AUC in differentiating present and absent proteins: 18% and 7% in two yeast samples and 9% in gastric samples over traditional methods in the test dataset. Additionally, proteins identified via Grape-Pi in gastric samples demonstrated a high correlation with mRNA data and identified gastric cancer proteins, like MAP4K4, missed by conventional methods.

Availability and Implementation

Grape-Pi is freely available at https://zenodo.org/records/11310518 and https://github.com/FDUguchunhui/GrapePi.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Associate Editor: Michael DeGiorgio
Michael DeGiorgio
Associate Editor
Search for other works by this author on:

Supplementary data