Abstract

Cytokines and other inflammatory mediators induce functional changes in the endothelium (“endothelium activation”), which have been shown to be markers of atherosclerotic vascular disease. Endothelial activation accompanies and promotes vascular disease, and is associated with overexpression of chemoattractants and adhesion molecules, which in turn lead to leukocyte binding to the endothelium. The nuclear factor-κB (NF-κB) system appears to regulate the expression of many of the genes involved in this process. Angiotensin II contributes to atherogenesis by increasing expression of many pro-inflammatory genes, in part by inducing oxidative stress, which activates NF-κB.

References

[1]

Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy.

Lancet
.
2000
;
355
:
253
–259

[2]

Kowala
MC
, Grove RI, Aberg G. Inhibitors of angiotensin converting enzyme decrease early atherosclerosis in hyperlipidemic hamsters: fosinopril reduces plasma cholesterol and captopril inhibits macrophage-foam cell accumulation independently of blood pressure and plasma lipids.
Atherosclerosis
.
1994
;
108
:
61
–72

[3]

Hayek
T
, Attias J, Smith J, et al. Antiatherosclerotic and antioxidative effects of captopril in apolipoprotein E-deficient mice.
J Cardiovasc Pharmacol
.
1998
;
31
:
540
–544

[4]

Keidar
S
, Attias J, Coleman R, Wirth K, Scholkens B, Hayek T. Attenuation of atherosclerosis in apolipoptotein E-deficient mice by ramipril is dissociated from its antihypertensive effect and from potentiation of bradykinin.
J Cardiovasc Pharmacol
.
2000
;
35
:
64
–72

[5]

Candido
R
, Jandeleit-Dahm KA, Cao Z, et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E-deficient mice.
Circulation
.
2002
;
106
:
246
–253

[6]

Schieffer
B
. Interaction of interleukin-6 and angiotensis II and atherosclerosis: culprit for inflammation.
Eur Heart J
.
2003
;
5
(Suppl. A):
A25
–A30

[7]

Gimbrone
MA
Jr., Kume N, Cybulsky MI. Vascular endothelial dysfunction and the pathogenesis of atherosclerosis. Weber PC, Leaf A. Atherosclerosis Reviews. New York: Raven Press; 1993.

[8]

Gimbrone
MA
Jr.. Vascular endothelium in health and disease. (Chapter 4) Haber E. Molecular Cardiovascolar Medicine. New York, NY: Scientific American Medicine; 1995.

[9]

De Caterina
R
, Gimbrone MA Jr.. Leukocyte-endothelial interactions and the pathogenesis of atherosclerosis. Kristensen SD, Schmidt EB, De Caterina R, Endres S. n-3 Fatty Acids—Prevention and Treatment in Vascular Disease. London: Springer Verlag; 1995. p. 9–24

[10]

Cybulsky
MI
, Gimbrone MA Jr.. Endothelial-leukocyte adhesion molecules in acute inflammation and atherogenesis. Simionescu N, Simionescu M. Endothelial cell dysfunctions. New York: Plenum Press; 1992. p. 129–140

[11]

Cybulsky
MI
, Gimbrone MA Jr.. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis.
Science
.
1991
;
251
:
788
–791

[12]

Li
H
, Cybulsky MI, Gimbrone MA Jr., Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium.
Arterioscl Thromb
.
1993
;
13
:
197
–204

[13]

Cybulsky
MI
, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis.
J Clin Invest
.
2001
;
107
:
1255
–1262

[14]

Gu
L
, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice.
Mol Cell
.
1998
;
2
:
275
–281

[15]

Rajavashisth
T
, Qiao JH, Tripathi S, et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice.
J Clin Invest
.
1998
;
101
:
2702
–2710

[16]

Kishimoto
T
, Taga T, Akira S. Cytokine signal transduction.
Cell
.
1994
;
76
:
253
–262

[17]

Collins
T
. Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion.
Lab Invest
.
1993
;
68
:
499
–508

[18]

Marui
N
, Offermann MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells.
J Clin Invest
.
1993
;
92
:
1866
–1874

[19]

Collins
T
, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.
FASEB J
.
1995
;
9
:
899
–909

[20]

Clinton
SK
, Libby P. Cytokines and growth factors in atherogenesis.
Arch Pathol Lab Med
.
1992
;
116
:
1292
–1300

[21]

Schwenke
DC
, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries.
Arteriosclerosis
.
1989
;
9
:
908
–918

[22]

Berliner
JA
, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics.
Circulation
.
1995
;
91
:
2488
–2496

[23]

Shih
DM
, Gu L, Hama S, et al. Genetic-dietary regulation of serum paraoxonase expression and its role in atherogenesis in a mouse model.
J Clin Invest
.
1996
;
97
:
1630
–1639

[24]

Schmidt
AM
, Hori O, Chen JX, et al. Advanced glycation end-products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes.
J Clin Invest
.
1995
;
96
:
1395
–1403

[25]

Basta
G
, Lazzerini G, Massaro M, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses.
Circulation
.
2002
;
105
:
816
–822

[26]

Weiss
D
, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis.
Am J Cardiol
.
2001
;
87
:
25C
–32C

[27]

Tummala
PE
, Chen XL, Sundell CL, et al. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin-angiotensin system and atherosclerosis.
Circulation
.
1999
;
100
:
1223
–1229

[28]

Kranzhofer
R
, Schmidt J, Pfeiffer CA, Hagl S, Libby P, Kubler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol
.
1999
;
19
:
1623
–1629

[29]

Grafe
M
, Auch-Schwelk W, Zakrzewicz A, et al. Angiotensin II-induced leukocyte adhesion in human coronary endothelial cells is mediated by E-selectin.
Circ Res
.
1997
;
81
:
804
–811

[30]

Kim
JA
, Berliner JA, Nadler JL. Angiotensin II increases monocyte binding to endothelial cells.
Biochem Biophys Res Commun
.
1996
;
226
:
862
–868

[31]

Jilma
B
, Li-Saw-Hee FL, Wagner OF, Beevers DG, Lip GY. Effects of enalapril and losartan on circulating adhesion molecules and monocyte chemotactic protein-1.
Clin Sci (Lond)
.
2002
;
103
:
131
–136

[32]

Navalkar
S
, Parthasarathy S, Santanam N, Khan BV. Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis.
J Am Coll Cardiol
.
2001
;
37
:
440
–444

[33]

Prasad
A
, Koh KK, Schenke WH, et al. Role of angiotensin II type 1 receptor in the regulation of cellular adhesion molecules in atherosclerosis.
Am Heart J
.
2001
;
142
:
248
–253

[34]

Furie
B
, Furie BC, Flaumenhaft R. A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion.
Thromb Haemost
.
2001
;
86
:
214
–221

[35]

Han
Y
, Runge MS, Brasier AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors.
Circ Res
.
1999
;
84
:
695
–703

[36]

Schieffer
B
, Schieffer E, Hilfiker-Kleiner D, et al. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability.
Circulation
.
2000
;
101
:
1372
–1378

[37]

Keidar
S
, Heinrich R, Kaplan M, Hayek T, Aviram M. Angiotensin II administration to atherosclerotic mice increases macrophage uptake of oxidized LDL: a possible role for inteleukin-6.
Arterioscler Thromb Vasc Biol
.
2001
;
21
:
1464
–1469

[38]

Hernandez-Presa
MA
, Bustos C, Ortego M, et al. Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis.
Circulation
.
1997
;
95
:
1532
–1541

[39]

Chen
X-L
, Tummala PE, Olbrych MT, Alexander RW, Medford RM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells.
Circ Res
.
1998
;
83
:
952
–959

[40]

Chen
H
, Li D, Saldeen T, Phillips MI, Mehta JL. Attenuation of tissue P-selectin and MCP-1 expression and intimal proliferation by AT(1) receptor blockade in hyperlipidemic rabbits.
Biochem Biophys Res Commun
.
2001
;
282
:
474
–479

[41]

Hernandez-Presa
MA
, Bustos C, Ortego M, Tunon J, Ortega L, Egido L. ACE inhibitor quinapril reduces the arterial expression of NF-kappaB-dependent proinflammatory factors but not of collagen I in a rabbit model of atherosclerosis.
Am J Pathol
.
1998
;
153
:
1825
–1837

[42]

Chen
H
, Li D, Sawamura T, Inoue K, Mehta JL. Upregulation of LOX-1 expression in aorta of hypercholesterolemic rabbits: modulation by losartan.
Biochem Biophys Res Commun
.
2000
;
276
:
1100
–1104

[43]

Chen
H
, Li D, Mehta JL. Modulation of matrix metalloproteinase-1, its tissue inhibitor and nuclear factor-kappa B by losartan in hypercholesterolemic rabbits.
J Cardiovasc Pharmacol
.
2002
;
39
:
332
–339

[44]

Li
J
, Brasier AR. Angiotensinogen gene activation by angiotensin II is mediated by the rel A (nuclear factor-kappaB 65) transcription factor: one mechanism for the renin angiotensin system positive feedback loop in hepatocytes.
Mol Endocrinol
.
1996
;
10
:
252
–264

[45]

Brasier
AR
, Jamaluddin M, Han Y, Patterson C, Runge MS. Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor.
Mol Cell Biochem
.
2000
;
212
:
155
–169

[46]

Brasier
AR
, Recinos A 3rd, Eledrisi MS. Vascular inflammation and the renin-angiotensin system.
Arterioscler Thromb Vasc Biol
.
2002
;
22
:
1257
–1266

[47]

Kranzhofer
R
, Browatzki M, Schmidt J, Kubler W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes.
Biochem Biophys Res Commun
.
1999
;
257
:
826
–828

[48]

Nickenig
G
, Harrison DG. The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part I: oxidative stress and atherogenesis.
Circulation
.
2002
;
105
:
393
–396

[49]

Nickenig
G
, Harrison DG. The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: Part II: AT(1) receptor regulation.
Circulation
.
2002
;
105
:
530
–536

[50]

Landmesser
U
, Drexler H. Oxidative stress, the renin-angiotensin system, and atherosclerosis.
Eur Heart J
.
2003
;
5
(Supp. A):
A3
–A7

[51]

Griendling
KK
, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulated NADH and NADPH activity in cultured vascular smooth muscle cells.
Circ Res
.
1994
;
74
:
1141
–1148

[52]

Griendling
K
, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease.
Circ Res
.
2000
;
86
:
494
–501

[53]

Meyer
JW
, Schmitt ME. A central role for the endothelial NDPH oxidase in atherosclerosis.
FEBS Lett
.
2000
;
472
:
1
–4

[54]

Mollnau
H
, Wendt M, Szocs K, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling.
Circ Res
.
2002
;
90
:
E58
–E65

[55]

Griendling
K
, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology.
Arterioscler Thromb Vasc Biol
.
2000
;
20
:
2175
–2183

[56]

Wassmann
S
, Laufs U, Baumer AT, et al. Inhibition of geranyl-geranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase.
Mol Pharmacol
.
2001
;
59
:
646
–654

[57]

Wang
W
, Wang S, Yan L, et al. Superoxide production and reactive oxygen species signaling by endothelial nitric-oxide synthase.
J Biol Chem
.
2000
;
275
:
16899
–16903

[58]

Hink
U
, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus.
Circ Res
.
2001
;
88
:
e14
–e22

[59]

Pueyo
ME
, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress.
Arterioscler Thromb Vasc Biol
.
2000
;
20
:
645
–651

[60]

De Caterina
R
, Libby P, Peng H-B, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines.
J Clin Invest
.
1995
;
96
:
60
–68

[61]

Armstead
VE
, Minchenko AG, Schuhl RA, Hayward R, Nossuli TO, Lefu AM. Regulation of P-selectin expression in human endothelial cells by nitric oxide.
Am J Physiol
.
1997
;
273
:
H740
–H746

[62]

Huie
RE
, Padmaja S. Reaction of no with superoxide.
Free Radic Res Commun
.
1993
;
18
:
195
–199

[63]

Landmesser
U
, Harrison DG. Oxidant stress as a marker for cardiovascular events: Ox marks the spot.
Circulation
.
2001
;
104
:
2638
–2640

[64]

Münzel
T
, Harrison DG. Increased superoxide in heart failure: a biochemical baroreflex gone awry.
Circulation
.
1999
;
100
:
216
–218

[65]

De Caterina
R
, Cybulsky MI, Clinton SK, Gimbrone MA Jr, Libby P. The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells.
Arterioscl Thromb
.
1994
;
14
:
1829
–1836

[66]

De Caterina
R
, Libby P. Control of endothelial leukocyte adhesion molecules by fatty acids.
Lipids
.
1996
;
31
(Suppl. 1):
S557
–S563

[67]

Carluccio
MA
, Massaro M, Bonfrate C, et al. Oleic acid inhibits endothelial activation: a direct vascular antiatherogenic mechanisms of a nutritional component in the mediterranean diet.
Arterioscler Thromb Vasc Biol
.
1999
;
19
:
220
–228

[68]

Cooke
JP
, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit.
J Clin Invest
.
1992
;
90
:
1168
–1172

[69]

Simoncini
T
, De Caterina R, Genazzani AR. Selective estrogen receptor modulators: different actions on vascular cell adhesion molecule-1 (VCAM-1) expression in human endothelial cells.
J Clin Endocrinol Metab
.
1999
;
84
:
815
–818

[70]

Simoncini
T
, Maffei S, Basta G, et al. Estrogens and glucocorticoids inhibit endothelial vascular cell adhesion molecule-1 expression by different transcriptional mechanisms.
Circ Res
.
2000
;
87
:
19
–25

[71]

Zampolli
a
, Basta G, Lazzerini G, Feelisch M, De Caterina R. Inhibition of endothelial cell activation by nitric oxide donors.
J Pharmacol Exp Ther
.
2000
;
295
:
818
–823

[72]

Vaughan
D
. Pharmacology of ACE inhibitorss versus AT1 blockers.
Can J Cardiol
.
2000
;
16
(Suppl. E):
36E
–40E

[73]

Peng
H-B
, Libby P, Liao J. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B.
J Biol Chem
.
1995
;
270
:
14214
–14219

[74]

Gohlke
P
, Pees C, Unger T. AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism.
Hypertension
.
1998
;
31
:
349
–355

[75]

Searles
CD
, Harrison DG. The interaction of nitric oxide, bradykinin, and the angiotensin II type 2 receptor: lessons learned from transgenic mice.
J Clin Invest
.
1999
;
104
:
1013
–1014

[76]

Schuh
JR
, Blehm DJ, Frierdich GE, McMahon EG, Blaine EH. Differential effects of renin-angiotensin system blockade on atherogenesis in cholesterol-fed rabbits.
J Clin Invest
.
1993
;
91
:
1453
–1458

[77]

Fennessy
PA
, Campbell JH, Mendelsohn FAO, Campbell GR. Angiotensin-converting enzyme inhibitors and atherosclerosis: relevance of animal models to human disease.
Clin Exp Pharmacol Physiol
.
1996
;
23
(8):
S30
–S32

[78]

Murphey
L
, Vaughan D, Brown N. Contribution of bradykinin to the cardioprotective efforts of ACE inhibition.
Eur Heart J
.
2003
;
5
(Suppl. A):
A37
–A41

[79]

Harrison
DG
, Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: implications for impaired vasomotion.
Am J Cardiol
.
1995
;
75
:
75B
–81B

[80]

Huraux
C
, Makita T, Kurz S, et al. Superoxide production, risk factors, and endothelium-dependent relaxations in human internal mammary arteries.
Circulation
.
1999
;
99
:
53
–59

This content is only available as a PDF.