Abstract

Myocardial injury is a common disease in the plateau, especially in the lowlanders who have migrated to the plateau, in which the pathogenesis is not well understood. Here, we established a cohort of lowlanders comprising individuals from both low-altitude and high-altitude areas and conducted plasma proteome profiling. Proteomic data showed that there was a significant shift in energy metabolism and inflammatory response in individuals with myocardial abnormalities at high altitude. Notably, integrin ITGA2B emerged as a potential key player in this context. Functional studies demonstrated that ITGA2B upregulated the transcription and secretion of interleukin-6 (IL-6) through integrin-linked kinase (ILK) and nuclear factor-κB (NF-κB) signaling axis under hypoxic conditions. Moreover, ITGA2B disrupted mitochondrial structure and function, increased glycolytic capacity, and aggravated energy reprogramming from oxidative phosphorylation to glycolysis. Leveraging the therapeutic potential of traditional Chinese medicine in cardiac diseases, we discovered that tanshinone ⅡA (TanⅡA) effectively alleviated the high-altitude myocardial injury caused by the abnormally elevated expression of ITGA2B, thus providing a novel candidate therapeutic strategy for the prevention and treatment of high-altitude myocardial injury.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.

Author notes

Equal contribution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data