Abstract

This article describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittle behaviour of more traditional deduction engines such as theorem provers.

The article explains the way logical connectives can be used in semantic vector models, and summarizes the development of Predication-based Semantic Indexing, which involves the use of Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base of subject-predicate-object triples. Experiments show that the use of continuous models for formal reasoning is not only possible, but already demonstrably effective for some recognized informatics tasks, and showing promise in other traditional problem areas. Examples described in this article include: predicting new uses for existing drugs in biomedical informatics; removing unwanted meanings from search results in information retrieval and concept navigation; type inference from attributes; comparing words based on their orthography; and representing tabular data, including modelling numerical values.

The algorithms and techniques described in this article are all publicly released and freely available in the Semantic Vectors open-source software package.1

References

[1]
Aerts
D.
,
Quantum structure in cognition
Journal of Mathematical Psychology
,
2009
, vol.
53
(pg.
314
-
348
)
[2]
D. Aerts and M. Czachor. Quantum aspects of semantic analysis and symbolic artificial intelligence. 2003. arXiv preprint quant-ph/0309022.
[3]
Aitchison
J.
Words in the mind: an introduction to the mental lexicon
,
2002
3rd
Blackwell
[4]
Baeza-Yates
R.
Ribiero-Neto
B.
Modern Information Retrieval
,
1999
Addison Wesley/ACM Press
[5]
Baroni
M.
Zamparelli
R.
,
Nouns are vectors, adjectives are matrices: representing adjective-noun constructions in semantic space
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP)
,
2010
ACL
(pg.
1183
-
1193
)
[6]
Berners-Lee
T.
Hendler
J.
Lassila
O.
,
The Semantic Web
Scientific American
,
2001
, vol.
284
(pg.
28
-
37
)
[7]
Birkhoff
G.
von Neumann
J.
,
The logic of quantum mechanics
Annals of Mathematics
,
1936
, vol.
37
(pg.
823
-
843
)
[8]
Blacoe
W.
Lapata
M.
,
A comparison of vector-based representations for semantic composition
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Association for Computational Linguistics, EMNLP-CoNLL '12
,
2012
ACL
(pg.
546
-
556
)
[9]
Blacoe
W.
Kashefi
E.
Lapata
M.
,
A quantum-theoretic approach to distributional semantics
Proceedings of NAACL-HLT
,
2013
ACL
(pg.
847
-
857
)
[10]
Blei
D. M.
,
Probabilistic topic models
Communications of the ACM
,
2012
, vol.
55
(pg.
77
-
84
)
[11]
Busemeyer
J. R.
Bruza
P. D.
Quantum Models of Cognition and Decision
,
2012
Cambridge University Press
[12]
Clark
S.
Pulman
S.
Bruza
P.
Lawless
W.
van Rijsbergen
K.
Sofge
Donald
,
Combining symbolic and distributional models of meaning
AAAI Spring Symposium: Quantum Interaction
,
2007
AAAI Press
(pg.
52
-
55
)
[13]
Clarke
D.
,
A context-theoretic framework for compositionality in distributional semantics
Computational Linguistics
,
2012
, vol.
38
(pg.
41
-
71
)
[14]
B. Coecke, M. Sadrzadeh and S. Clark. Mathematical foundations for a compositional distributional model of meaning. 2010. CoRR abs/1003.4394.
[15]
Cohen
T.
Schvaneveldt
R.
Rindflesch
T.
,
Predication-based semantic indexing: permutations as a means to encode predications in semantic space
AMIA Annual Symposium Proceedings
,
2009
AMIA
(pg.
114
-
118
)
[16]
Cohen
T.
Schvaneveldt
R.
Widdows
D.
,
Reflective random indexing and indirect inference: a scalable method for discovery of implicit connections
Journal of Biomedical Informatics
,
2010
, vol.
43
(pg.
240
-
256
)
[17]
Cohen
T.
Whitfield
G. K.
Schvaneveldt
R. W.
Mukund
K.
Rindflesch
T.
,
EpiphaNet: an interactive tool to support biomedical discoveries
Journal of Biomedical Discovery and Collaboration
,
2010
, vol.
5
(pg.
21
-
49
)
[18]
Cohen
T.
Widdows
D.
De Vine
L.
Schvaneveldt
R.
Rindflesch
T. C.
Busemeyer
J. R.
Dubois
F.
Lambert-Mogiliansky
A.
Melucci
M.
,
Many paths lead to discovery: analogical retrieval of cancer therapies
Quantum Interaction, no. 7620 in Lecture Notes in Computer Science
,
2012
Springer Berlin
[19]
Cohen
T.
Widdows
D.
Schvaneveldt
R. W.
Davies
P.
Rindflesch
T. C.
,
Discovering discovery patterns with predication-based semantic indexing
Journal of Biomedical Informatics
,
2012
, vol.
45
(pg.
1049
-
1065
)
[20]
Cohen
T.
Widdows
D.
Schvaneveldt
R.
Rindflesch
T.
Bruza
P. D.
Lawless
W.
van Rijsbergen
K.
Sofge
D. A.
,
Logical leaps and quantum connectives: forging paths through predication space
Proceedings of the AAAI Fall Symposium on Quantum Informatics for Cognitive, Social, and Semantic Processes (QI 2010)
,
2010
AAAI Press
[21]
Cohen
T.
Widdows
D.
Schvaneveldt
R.
Rindflesch
T.
Song
D.
Melucci
M.
Frommholz
I.
Zhang
P.
Wang
L.
Arafat
S.
,
Finding schizophrenia's prozac: Emergent relational similarity in predication space
QI'11 Proceedings of the 5th International Symposium on Quantum Interactions Aberdeen
,
2011
Springer
(pg.
48
-
59
)
[22]
Cohen
T.
Widdows
D.
Schvaneveldt
R.
Rindflesch
T.
,
Discovery at a distance: farther journey's in predication space
Proceedings of the First International Workshop on the role of Semantic Web in Literature-Based Discovery (SWLBD2012)
,
2012
IEEE
[23]
Cohen
T.
Widdows
D.
Stephan
C.
Zinner
R.
Kim
J.
Rindflesch
T.
Davies
P.
,
Predicting high-throughput screening results with scalable literature-based discovery methods
CPT: Pharmacometrics and Systems Pharmacology
,
2014
, vol.
3
(pg.
1
-
9
)
[24]
Cohen
T.
Widdows
D.
Wahle
M.
Schvaneveldt
R.
Atmanspacher
H.
Haven
E.
Kitto
K.
Raine
D.
,
Orthogonality and orthography: introducing measured distance into semantic space
Proceedings of the Seventh International Conference on Quantum Interaction, Leicester, UK, 2013
,
2012
Springer
(pg.
34
-
46
)
[25]
Cox
G. E.
Kachergis
G.
Recchia
G.
Jones
M. N.
,
Toward a scalable holographic word-form representation
Behavior Research Methods
,
2011
, vol.
43
(pg.
602
-
615
)
[26]
Crawford
E.
Gingerich
M.
Eliasmith
C.
Khauff
M.
Pauen
M.
Sebanz
N.
Wachsmuth
I.
,
Biologically plausible, human-scale knowledge representation
Proceedings of the 35th annual conference of the cognitive science society
,
2013
Cognitive Science Society
(pg.
412
-
417
)
[27]
De Vine
L.
Bruza
P.
Bruza
P. D.
Lawless
W.
van Rijsbergen
K.
Sofge
D. A.
,
Semantic oscillations: Encoding context and structure in complex valued holographic vectors
Quantum Informatics for Cognitive, Social, and Semantic Processes (QI 2010)
,
2010
AAAI Press
[28]
Deerwester
S.
Dumais
S.
Furnas
G.
Landauer
T.
Harshman
R.
,
Indexing by latent semantic analysis
Journal of the American Society for Information Science
,
1990
, vol.
41
(pg.
391
-
407
)
[29]
Eliasmith
C.
How to Build a Brian: A Neural Architecture for Biological Cognition
,
2013
Oxford University Press
[30]
Eliasmith
C.
Thagard
P.
,
Integrating structure and meaning: a distributed model of analogical mapping
Cognitive Science
,
2001
, vol.
25
(pg.
245
-
286
)
[31]
Fodor
J. A.
Pylyshyn
Z. W.
,
Connectionism and cognitive architecture: a critical analysis
Cognition
,
1988
, vol.
28
(pg.
3
-
71
)
[32]
Gallant
S. I.
Okaywe
T. W.
,
Representing objects, relations, and sequences
Neural Computation
,
2013
, vol.
25
(pg.
2038
-
2078
)
[33]
Gärdenfors
P.
Conceptual Spaces: The Geometry of Thought
,
2000
Bradford Books MIT Press
[34]
Gayler
R. W.
Slezak
P.
,
Vector symbolic architectures answer jackendoff's challenges for cognitive neuroscience
ICCS/ASCS International Conference on Cognitive Science, Sydney, Australia
,
2004
University of New South Wales
(pg.
133
-
138
)
[35]
H. Grassmann. Extension Theory. History of Mathematics Sources, American Mathematical Society, London Mathematical Society, 1862. (translated by Lloyd C. Kannenberg (2000))
[36]
E. Grefenstette. Towards a formal distributional semantics: simulating logical calculi with tensors. 2013. arXiv preprint arXiv:13045823.
[37]
Grefenstette
E.
Sadrzadeh
M.
,
Experimental support for a categorical compositional distributional model of meaning
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP)
,
2011
ACL
(pg.
1394
-
1404
)
[38]
Hannagan
T.
Dupoux
E.
Christophe
A.
,
Holographic string encoding
Cognitive Science
,
2011
, vol.
35
(pg.
79
-
118
)
[39]
Hofstadter
D.
Sander
E.
Surfaces and Essences
,
2013
Basic Books
[40]
Hristovski
D.
Friedman
C.
Rindflesch
T. C.
Peterlin
B.
,
Exploiting semantic relations for literature-based discovery
AMIA Annual Symposium Proceedings/AMIA Symposium AMIA Symposium
,
2006
AMIA
(pg.
349
-
353
)
[41]
Hume
D.
A Treatise of Human Nature
,
2003
Courier Dover Publications
pg.
1739
[42]
Jones
M. N.
Mewhort
D. J. K.
,
Representing word meaning and order information in a composite holographic lexicon
Psychological Review
,
2007
, vol.
114
(pg.
1
-
37
)
[43]
Kachergis
G.
Cox
G.
Jones
M.
Honkela
T.
Duch
W.
Girolami
M.
,
OrBEAGLE: integrating orthography into a holographic model of the lexicon
Artificial Neural Networks and Machine Learning–ICANN, 2011
,
2011
Springer
(pg.
307
-
314
)
[44]
Kanerva
P.
Sparse Distributed Memory
,
1988
The MIT Press
[45]
Kanerva
P.
,
Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors
Cognitive Computation
,
2009
, vol.
1
(pg.
139
-
159
)
[46]
Kanerva
P.
Bruza
P. D.
Lawless
W.
van Rijsbergen
K.
Sofge
D. A.
,
What we mean when we say “What's the dollar of mexico?”: prototypes and mapping in concept space
2010 AAAI Fall Symposium Series
,
2010
AAAI Press
[47]
Kanerva
P.
Sjödin
G.
Kristoferson
J.
Karlsson
R.
Levin
B.
Holst
A.
Karlgren
J.
Sahlgren
M.
Uesaka
Y.
Kanerva
P.
Asoh
H.
,
Computing with large random patterns
Foundations of Real-World Intelligence
,
2001
CSLI Publications
[48]
Khrennikov
A.
Ubiquitous Quantum Structure: From Psychology to Finance
,
2010
Springer
[49]
Kilicoglu
H.
Shin
D.
Fiszman
M.
Rosemblat
G.
Rindflesch
T. C.
,
Semmeddb: a pubmed-scale repository of biomedical semantic predications
Bioinformatics
,
2012
, vol.
28
(pg.
3158
-
3160
)
[50]
Kintsch
W.
Comprehension: A Paradigm for Cognition
,
1998
Cambridge University Press
[51]
Kintsch
W.
Keenan
J.
,
Reading rate and retention as a function of the number of propositions in the base structure of sentences
Cognitive Psychology
,
1973
, vol.
5
(pg.
257
-
274
[52]
Landauer
T.
Dumais
S.
,
A solution to Plato's problem: the latent semantic analysis theory of acquisition
Psychological Review
,
1997
, vol.
104
(pg.
211
-
240
)
[53]
Levy
S. D.
Gayler
R.
Wang
P.
Goertze
B.
Franklin
S.
,
Vector symbolic architectures: a new building material for artificial general intelligence
Proceedings of the 2008 Conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference
,
2008
IOS Press
(pg.
414
-
418
)
[54]
Manning
C. D.
Schütze
H.
Foundations of Statistical Natural Language Processing
,
1999
The MIT Press
[55]
von Neumann
J.
Mathematical Foundations of Quantum Mechanics
,
1932
Princeton University Press
 
(Reprinted 1996)
[56]
Plate
T. A.
Tesauro
G.
Cowan
J. D.
Alspector
J.
,
Estimating analogical similarity by dot-products of holographic reduced representations
Advances in Neural Information Processing Systems
,
1994
Morgan Kaufmann
(pg.
1109
-
1116
)
[57]
Plate
T. A.
,
Analogy retrieval and processing with distributed vector representations
Expert Systems
,
2000
, vol.
17
(pg.
29
-
40
)
[58]
Plate
T. A.
Holographic Reduced Representations: Distributed Representation for Cognitive Structures
,
2003
CSLI Publications
[59]
van Rijsbergen
K.
The Geometry of Information Retrieval
,
2004
Cambridge University Press
[60]
Rindflesch
T. C.
Fiszman
M.
,
The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text
Journal of Biomedical Informatics
,
2003
, vol.
36
(pg.
462
-
477
)
[61]
Rosch
E.
,
Cognitive representations of semantic categories
Journal of Experimental Psychology: General
,
1975
, vol.
104
(pg.
192
-
233
)
[62]
Sahlgren
M.
Holst
A.
Kanerva
P.
,
Permutations as a means to encode order in word space
Proceedings of the 30th Annual Meeting of the Cognitive Science Society (CogSci'08), July 23–26, Washington DC, USA
,
2008
Cognitive Science Society
(pg.
1233
-
1238
)
[63]
Salton
G.
McGill
M.
Introduction to Modern Information Retrieval
,
1983
McGraw-Hill
[64]
F. Sandin, B. Emruli and M. Sahlgren. Incremental dimension reduction of tensors with random index. 2011. CoRR abs/1103.3585.
[65]
Schvaneveldt
R.
Cohen
T.
Whitfield
G. K.
Staszewski
J. J.
,
Paths to discovery
Expertise and Skills Acquisition: The Impact of William G Chase
,
2013
Carnegie Mellon Symposia on Cognition Series, Psychology Press
(pg.
147
-
177
)
[66]
Shang
N.
Xu
H.
Rindflesch
T. C.
Cohen
T.
,
Identifying plausible adverse drug reactions using knowledge extracted from the literature
Journal of Biomedical Informatics
,
2014
, vol.
52
(pg.
293
-
310
)
[67]
Smolensky
P.
,
Tensor product variable binding and the representation of symbolic structures in connectionist systems
Artificial Intelligence
,
1990
, vol.
46
(pg.
159
-
216
)
[68]
Socher
R.
Huval
B.
Manning
C. D.
Ng
A. Y.
Tsujii
J.
Henderson
J.
Pasca
M.
,
Semantic compositionality through recursive matrix-vector spaces
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Association for Computational Linguistics, EMNLP-CoNLL '12
,
2012
ACL
(pg.
1201
-
1211
)
[69]
Switzer
P.
Stevens
M. E.
Giuliano
V. E.
Heilprin
L. B.
,
Vector images in document retrieval
Statistical association Methods for Mechanized Documentation
,
1965
US Department of Commerce
(pg.
163
-
171
)
[70]
Turney
P. D.
,
Domain and function: A dual-space model of semantic relations and compositions
Journal of Artificial Intelligence Research
,
2012
, vol.
44
(pg.
533
-
585
)
[71]
Wahle
M.
Widdows
D.
Herskovic
J. R.
Bernstam
E. V.
Cohen
T.
,
Deterministic binary vectors for efficient automated indexing of medline/pubmed abstracts
AMIA Annual Symposium Proceedings, American Medical Informatics Association
,
2012
, vol.
2012
AMIA
pg.
940
[72]
Widdows
D.
Funakoshi
K.
Kübler
S.
Otterbacher
J.
,
Orthogonal negation in vector spaces for modelling word-meanings and document retrieval
Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL)
,
2003
ACL
(pg.
136
-
143
)
[73]
Widdows
D.
Geometry and Meaning
,
2004
CSLI Publications
[74]
Widdows
D.
Bruza
P. D.
Lawless
W.
van Rijsbergen
K.
Sofge
D.
Coecke
B.
Clark
S.
,
Semantic vector products: Some initial investigations
Proceedings of the Second International Symposium on Quantum Interaction
,
2008
College Publications
[75]
Widdows
D.
Cohen
T.
,
The semantic vectors package: New algorithms and public tools for distributional semantics
Fourth IEEE International Conference on Semantic Computing (ICSC)
,
2010
IEEE
(pg.
9
-
16
)
[76]
Widdows
D.
Cohen
T.
Busemeyer
J.
Dubois
F.
Lambert-Mogiliansky
A.
Melucci
M.
,
Real, complex, and binary semantic vectors
Sixth International Symposium on Quantum Interaction
,
2012
Springer
[77]
Zadeh
L. A.
,
Fuzzy logic
Computer
,
1988
, vol.
21
(pg.
83
-
93
)
This content is only available as a PDF.