Abstract

The literature on fiscal food policies focuses on their effectiveness in altering diets and improving health, while this paper focuses on their welfare costs. A formal welfare economics framework is developed to calculate the combined individualistic and distributional impacts of a tax-subsidy. Distributional characteristics of foods targeted by a tax tend to be concentrated in lower-income households. Further, consumption of fruit and vegetables tends to be concentrated in higher-income households; therefore, a subsidy on such foods increases regressivity. Aggregate welfare changes that result from a fiscal food policy are found to range from an increase of 1.41 per cent to a reduction of 2.06 per cent according to whether a subsidy is included, the degree of inequality aversion, and whether substitution among foods is allowed.

1. Introduction

One of the most pressing public health challenges is the prevalence of diet-related chronic disease resulting from poor dietary choices. For example, according to the 2004 Health Survey for England, which records body mass index (BMI), nearly 65 per cent of the adult population were overweight (BMI >25) while almost 25 per cent were obese (BMI >30). A great deal of interest and attention is focused on the use of fiscal interventions to correct poor dietary choices, in both Europe and the USA. Among the interventions that are proposed are taxes on foods which are deemed unhealthy, for example, those which are high in saturated fat or sugar and subsidies on foods that are deemed to be healthy, for example, fruit and vegetables. Much of the work to date focuses on overall effectiveness in reducing unhealthy food consumption and obesity rates. While many of the studies conducted by economists tend to show only a slight decrease in fat consumption resulting from a fat tax (Chouinard et al., 2005; Powell and Chaloupka, 2009), studies by health professionals show that fat taxes have meaningful impacts through reduced rates of cardiovascular disease (Marshall, 2000; Mytton et al., 2007). For example, Mytton et al. (2007) show that up to 3,200 deaths from cardiovascular disease could be avoided in the UK through a fat tax on a wide range of foods, and Marshall (2000) demonstrates that a tax on dietary saturated fat could avert up to 1,000 deaths a year in the UK.

In this paper, we consider the welfare implications of a fiscal food policy. While health and, therefore, welfare are likely to improve as a result of the policy, this will be countered by the fiscal burden. Although there is a great deal of attention on the use of fiscal interventions as a method of regulating diets and improving health, the welfare cost of such a policy remains a critical concern. From a classical welfare economics perspective, any policy which is based on food taxation will be regressive. Thus, through their effect on the fiscal burden, the impacts of the policy on welfare will be influenced by the magnitude of the tax and also, in a society which cares about distributional questions, who pays it. Addressing these issues requires a comprehensive social welfare framework which accounts for the impacts of changes in individual health and wealth interpersonally as well as individualistically. By presenting a formal analysis of the fiscal burden of tax- and subsidy-based food policy, this paper aims to extend the debate around the efficacy of such a policy to include consideration of the costs incurred. Distributional consequences are assessed using the distributional characteristic derived by Feldstein (1972) while the welfare impacts are measured using the method presented in Stern (1987) and Newbery (1995).1

The paper is organised as follows. A review of the literature is in Section 2, with an emphasis on the welfare effects of fiscal food policies. Section 3 describes the theoretical and empirical methodology. The data are described in Section 4, as well as the empirical results. The final section concludes.

2. Fiscal food policies and social welfare

The existing literature measuring the welfare incidence of a fat tax tends to use money-metric measures based on compensating and equivalent variation. Leicester and Windmeijer (2004) simulate the effects of a UK tax based on four nutrients found to have adverse health consequences when consumed in large quantities (saturated fat, mono-unsaturated fat, sodium and cholesterol). The tax is levied at the rate of one pence per kilogram of the nutrient and, based on the simulated tax rate using data from the 2000 National Food Survey, is found to be highly regressive. The poorest 2 per cent of the 8,000 households in the sample spend 0.7 per cent of their income on the tax, while the richest pay only 0.1 per cent (the median income group pay ∼0.25 per cent). Chouinard et al. (2007) examine the effects of a fat tax on dairy products using data on weekly average household purchases for a sample of 23 US cities. They simulate the effects of a tax based on the fat percentage of different dairy products. Based on a 10 per cent tax rate, they calculate the equivalent variation as a measure of the welfare loss resulting from the tax. Their results find the tax to be highly regressive, with the burden falling mostly on low-income households: the burden is 0.24 per cent for households with an annual income of USD 20,000, but only 0.024 per cent for households with an annual income of USD 100,000. Allais, Bertail, and Nichele (2010) conduct an analysis similar to Chouinard et al. (2007) except they extend their model to include demand elasticities for a full range of food groups for a sample of French households using the TNS Worldpanel survey. Simulating a 10 per cent tax on foods in the cheese and butter category they find the tax regressive as well: the burden is 0.22 per cent for modest income households but only 0.068 per cent for well-off households. Okrent and Alston (2012) estimate an equilibrium displacement model to estimate the welfare effects of a retail food policy that accounts for the possible health benefits. Although a number of scenarios and fiscal policies are examined, based on a scenario of a USD 0.005 tax per gram of fat, they calculate the welfare change using a compensating variation measure and find that annual change in social welfare, excluding changes in public health-care costs, is a reduction of USD −1.937 billion to social welfare (Okrent and Alston, 2012). Once the annual change in public healthcare costs are included, however, the social welfare was raised by USD 1.675 billion.

The studies cited above do not have the analysis of welfare changes as their primary motivation and there are a number of reasons to be dissatisfied with them in this aspect. Informal welfare measures of social welfare, such as the money-metric equivalent and compensating variations used in these studies, are far from ideal. Money metric utility measures assume that the social marginal utility of income is equal to one in every household (Banks, Blundell, Lewbel, 1996). This is a limiting assumption since it does not allow the analysis to distinguish between policies that have differing implications for the distribution of the fiscal burden across income groups. Moreover, Blackorby and Donaldson (1988) show that money metric measures violate concavity of social orderings over optimal commodity allocations unless household preferences are homothetic.2 Thus, while data requirements tend to be modest for money-metric measures, they only represent valid measures of welfare under very strict assumptions which are not normally descriptive of actual behaviour (Blackorby and Donaldson, 1988). Considerations of distributional equity can only be assessed under a rigorous social welfare model, which allows the social marginal utility of income to differ between households and permits social judgements on equality. This is accomplished by specifying a social welfare function with heterogeneous marginal utilities.

This paper examines the impact of fat taxes and thin subsides within a formal and rigorous welfare economics framework. The analysis provides two distinct economic measures which contribute to an analysis of welfare change. Firstly, the distributional characteristic is computed providing information on the degree of concentration of different food items in low-income households and makes clear the extent to which taxes and subsidies will impact the poor. Secondly, using first- and second-order welfare differentials the overall impact of fat taxes and thin subsidies on social welfare is assessed. The next section discusses the interpretation of the distributional characteristic and welfare approximations in the context of fiscal food policies.

3. The welfare impact of price changes

The method employed in this paper is based on the theory of marginal tax reform and normative optimal taxation theory. The theory originates with Feldstein (1972) and Ahmad and Stern (1984) and uses the optimal commodity taxation rules derived by Ramsey (1927) and Samuelson (1986). Summaries are found in Atkinson and Stiglitz (1980), Newbery and Stern (1987) and Santoro (2007). Define the social welfare function, which aggregates individual welfare levels over h=1,,H households3
(1)
where Uh is utility for household h, given by the indirect utility function Vh(eh,p), which is a function of household expenditures, eh and a vector of prices, p.4 Each household consumes a number (G) of goods and each household is assumed to face the same set of prices. This framework recognises both the individual impact, through Vh, and the distributional impact, through W, of a price change. The social welfare function in equation (1) is of the Bergson–Samuelson class, in which society's welfare is a function only of the individual utilities of its members (Bergson, 1938; Samuelson, 1956).

3.1. The distributional characteristic

The distributional characteristic, introduced by Feldstein (1972), is commonly used to examine distributional consequences from indirect taxes and price changes (see, for example, Newbery, 1995; Ray, 1999 and Liberati, 2001).5 It provides information on the distributional impacts of indirect price changes, like those caused by a fiscal food policy, by identifying the goods for which price changes will have the greatest impact on the less well-off.

The distributional characteristic is used to measure the extent to which consumption of a particular good is concentrated in those households which are deemed to be socially deserving in the sense that they have higher marginal social utilities of income. This is achieved by weighting consumption of the ith good (i=1,,G) by the hth household (qih) with its marginal social utility (βh) and aggregating across households. Thus, following Newbery (1995), the distributional characteristic, di, for the ith good is
(2)
where β¯1HhHβh is the average of the social utility weights over all households and QihHqih is aggregate consumption of the ith good.6 The measure is unit free, given the normalisation of the individual household social weight (βh) by the overall average social weight (β¯). We compute the distributional characteristic for different food groups (milk, cheese, pork, fresh fruits and vegetables, tinned fruit and vegetables etc.). The higher the value of di, the more concentrated the consumption of the food group in the more socially deserving households.

3.2. Welfare approximation

While the distributional characteristics are useful for summarising the distribution of a good's consumption and hence of a price change for the good, it does not address the aggregate change in social welfare. There are two aspects to this change, first the direct impact on individuals and second, through the altruistic motive, an indirect impact arising from the redistributive impact of the tax. Following Banks et al. (1996) we define the effect of increasing prices, which may be the result of imposing a tax, as:
(3)
where Δpi is the price change due to the tax on good i and ΔWpi is the resulting change in welfare. When the price change is small the first-order approximation
(4)
can be used to evaluate (3), where the equality follows the application of Roy's identity. The first-order approximation to the welfare change in (3) is therefore
(5)
and assuming that social welfare is the socially weighted sum of expenditure per adult equivalent
(6)
the proportional change in welfare is
(7)
where ωi=Qi/Q.
When the price change is larger the second-order approximation is more accurate
(8)
where the bracketed term in (8) is obtained using a Taylor series expansion.7 Assuming that the welfare weights are independent of price this can be written as follows:
(9)
where
(10)
(11)
ηi is the own-price elasticity of demand. The quality of the first-order approximation thus largely depends on the responsiveness of βh and qh to prices (Banks et al., 1996). Since the additional term in the second-order approximation is negative, the first-order approximation will generally overstate the social welfare effect of a price change from a tax (or understate the effect from a subsidy).

3.3. Evaluating the social weights

To proceed, a functional form for the social utility function must be assumed so that the social weights βh can be evaluated. An additive social welfare function based on isoelastic utility functions, originally proposed by Atkinson (1970), is the most frequently used social welfare function in the marginal indirect taxation literature (see, for example, Ahmad and Stern, 1984; Madden, 1995a, 1995b; Newbery, 1995, and Banks et al., 1996) and is formally represented by
(12)
Indirect utility is defined over real expenditure per equivalent adult,8Eh, and is parameterised as
(13)
where ρ0 is the coefficient of inequality aversion. Typically, k is chosen to assign a social weight of unity to either the household with the lowest expenditure or the household with average expenditure. Given the functional form in equation (13), the social weights (i.e. marginal social utility) are
(14)
where social weight of 1 is being applied to the household with the smallest expenditure per equivalent adult.

The inequality aversion parameter determines the extent to which a marginal increase in expenditure to the poor is worth more than to the rich. Thus, values of ρ that are successively greater than zero lead to greater weight being applied to the welfare of poorer households. As a result, the relative weight given to consumption of low-income households in the distributional characteristic (i.e. βh) is also increased. At one extreme, when ρ=0 then W=Vh is the Benthamite pure utilitarian case of no inequality aversion and βh collapses to unity meaning all households are applied the same social weight so distributional issues are of no concern. At the other extreme, when ρ then W=min{V1,,VH} is the Rawlsian maximin case in which only the utility of the poorest household matters. A range of values for ρ are used in our empirical analysis to assess whether conclusions are robust to different distributional judgements.

4. Data and food groups

Data on food expenditures and quantities are from the UK government's Expenditure and Food Survey (EFS) for 2003–2004. The 2003–2004 dataset is based on 7,014 households in 672 postcode sectors stratified by Government Office Region in England and Wales. Participating households voluntarily record food purchases for consumption at home for a 2-week period using a food diary for each individual over 7 years of age. The data collected by the food diaries are supplemented with the use of till receipts. The EFS identifies four major categories of interest: food (subdivided into 55 categories), non-alcoholic drink (subdivided into seven groups), alcoholic drink (subdivided in four groups) and catering services (split into three categories).

Individual food items are converted into aggregate food groups. The aggregation is necessary in order to estimate the demand system that is required for the computation of the second-order welfare effects. A two-level hierarchy is adopted for the purpose of demand system estimation. In the top level, foods are aggregated into: dairy and eggs; meat and fish; staples and starches; fruit and vegetables; fats and sugars; beverages and hot take-outs. At the second level, these broad categories are disaggregated into the groups listed in Tables 1, 2 and 3. The rationale adopted in the second-level aggregation is to identify separable groups which have similar fat contents in order that a similar fat tax would be applied to all goods within the group.9 This entailed a compromise and in some cases a range of fat contents exists within the group. The clearest example of this is in the milk and creams group which, for example, includes cream, full-fat and semi-skimmed milk. In the interests of brevity we do not give a detailed explanation of the composition of most groups which are, on the whole self-explanatory. Some detail is in order for the following groups, however. The ‘other meat’ category is largely made up of ready-made meat products such as meat pies, sausage rolls and meat-based ready-meals. The ‘potatoes’ category includes fresh, processed and canned potatoes. The ‘one-a-day only’ fruit and vegetables category comprises those fruits and vegetables, such as baked beans and fruit juices, for which multiple portions do not count towards the recommended five-a-day.10 Lastly, the ‘other fruit and vegetable’ category is largely ready-meals and take-out meals and ‘all fats’ include margarines and oils.

Table 1.

Fiscal food policy price changes

Food subgroupCombined tax/subsidy (%)Tax only (%)
Cheeses15.0015.00
Eggs3.203.20
Milk and cream1.821.82
Other dairy2.692.69
Beef6.286.28
Lamb6.306.30
Pork5.545.54
Poultry1.861.86
Fish1.361.36
Other meats5.085.08
Breads0.460.46
Breakfast cereals0.790.79
Rice and pasta0.290.29
Potatoes0.120.12
Other starches4.764.76
Fresh fruit and vegetables−26.760.00
Frozen fruit and vegetables−26.760.00
Tinned and processed fruit and vegetables−26.760.00
One-a-day only fruit and vegetables0.420.42
Other fruit and vegetables2.262.26
All fats15.0015.00
Biscuit, cakes, pastry8.528.52
Chips and crisps5.265.26
Candies and other sweets4.764.76
Alcohol0.010.01
Soft drinks0.000.00
Tea and coffee0.550.55
Water0.000.00
Hot takeaway3.153.15
Food subgroupCombined tax/subsidy (%)Tax only (%)
Cheeses15.0015.00
Eggs3.203.20
Milk and cream1.821.82
Other dairy2.692.69
Beef6.286.28
Lamb6.306.30
Pork5.545.54
Poultry1.861.86
Fish1.361.36
Other meats5.085.08
Breads0.460.46
Breakfast cereals0.790.79
Rice and pasta0.290.29
Potatoes0.120.12
Other starches4.764.76
Fresh fruit and vegetables−26.760.00
Frozen fruit and vegetables−26.760.00
Tinned and processed fruit and vegetables−26.760.00
One-a-day only fruit and vegetables0.420.42
Other fruit and vegetables2.262.26
All fats15.0015.00
Biscuit, cakes, pastry8.528.52
Chips and crisps5.265.26
Candies and other sweets4.764.76
Alcohol0.010.01
Soft drinks0.000.00
Tea and coffee0.550.55
Water0.000.00
Hot takeaway3.153.15
Table 1.

Fiscal food policy price changes

Food subgroupCombined tax/subsidy (%)Tax only (%)
Cheeses15.0015.00
Eggs3.203.20
Milk and cream1.821.82
Other dairy2.692.69
Beef6.286.28
Lamb6.306.30
Pork5.545.54
Poultry1.861.86
Fish1.361.36
Other meats5.085.08
Breads0.460.46
Breakfast cereals0.790.79
Rice and pasta0.290.29
Potatoes0.120.12
Other starches4.764.76
Fresh fruit and vegetables−26.760.00
Frozen fruit and vegetables−26.760.00
Tinned and processed fruit and vegetables−26.760.00
One-a-day only fruit and vegetables0.420.42
Other fruit and vegetables2.262.26
All fats15.0015.00
Biscuit, cakes, pastry8.528.52
Chips and crisps5.265.26
Candies and other sweets4.764.76
Alcohol0.010.01
Soft drinks0.000.00
Tea and coffee0.550.55
Water0.000.00
Hot takeaway3.153.15
Food subgroupCombined tax/subsidy (%)Tax only (%)
Cheeses15.0015.00
Eggs3.203.20
Milk and cream1.821.82
Other dairy2.692.69
Beef6.286.28
Lamb6.306.30
Pork5.545.54
Poultry1.861.86
Fish1.361.36
Other meats5.085.08
Breads0.460.46
Breakfast cereals0.790.79
Rice and pasta0.290.29
Potatoes0.120.12
Other starches4.764.76
Fresh fruit and vegetables−26.760.00
Frozen fruit and vegetables−26.760.00
Tinned and processed fruit and vegetables−26.760.00
One-a-day only fruit and vegetables0.420.42
Other fruit and vegetables2.262.26
All fats15.0015.00
Biscuit, cakes, pastry8.528.52
Chips and crisps5.265.26
Candies and other sweets4.764.76
Alcohol0.010.01
Soft drinks0.000.00
Tea and coffee0.550.55
Water0.000.00
Hot takeaway3.153.15
Table 2.

Demand elasticities

Food subgroupOwn-price
Expenditure
LinearStd Dev.LinearStd Dev.
Cheeses−0.6550.0300.8780.014
Eggs−0.7470.0300.5020.023
Milk and cream−0.6010.0320.9650.012
Other dairy−0.9810.0371.3520.018
Beef−0.8530.0410.8290.019
Lamb−0.9100.0410.8340.023
Pork−0.8420.0370.8510.019
Poultry−0.9480.0210.8300.016
Fish−0.6880.0390.7990.019
Other meats−1.6360.1081.6540.034
Breads−0.7170.0270.8760.013
Breakfast cereals−0.7290.0300.8350.014
Rice and pasta−0.7810.0250.8060.020
Potatoes−0.9460.0280.7710.025
Other starches−1.2670.0551.5170.022
Fresh fruit and vegetables−0.9850.0221.1030.008
Frozen fruit and vegetables−1.1050.0440.6420.023
Tinned and processed fruit and vegetables−0.9080.0390.5180.021
One-a-day only fruit and vegetables−0.8050.0310.6670.017
Other fruit and vegetables−1.2130.0531.5530.033
All fats−0.6070.0290.6410.019
Biscuit, cakes, pastry−0.7510.0251.0070.016
Chips and crisps−0.8900.0330.8170.018
Candies and other sweets−0.9830.0411.3790.020
Alcohol−1.0000.0221.0910.008
Soft drinks−0.9300.0220.8560.011
Tea and coffee−0.9290.0250.6260.010
Water−1.8160.0671.7740.029
Hot takeaway−1.0970.1361.3580.134
Food subgroupOwn-price
Expenditure
LinearStd Dev.LinearStd Dev.
Cheeses−0.6550.0300.8780.014
Eggs−0.7470.0300.5020.023
Milk and cream−0.6010.0320.9650.012
Other dairy−0.9810.0371.3520.018
Beef−0.8530.0410.8290.019
Lamb−0.9100.0410.8340.023
Pork−0.8420.0370.8510.019
Poultry−0.9480.0210.8300.016
Fish−0.6880.0390.7990.019
Other meats−1.6360.1081.6540.034
Breads−0.7170.0270.8760.013
Breakfast cereals−0.7290.0300.8350.014
Rice and pasta−0.7810.0250.8060.020
Potatoes−0.9460.0280.7710.025
Other starches−1.2670.0551.5170.022
Fresh fruit and vegetables−0.9850.0221.1030.008
Frozen fruit and vegetables−1.1050.0440.6420.023
Tinned and processed fruit and vegetables−0.9080.0390.5180.021
One-a-day only fruit and vegetables−0.8050.0310.6670.017
Other fruit and vegetables−1.2130.0531.5530.033
All fats−0.6070.0290.6410.019
Biscuit, cakes, pastry−0.7510.0251.0070.016
Chips and crisps−0.8900.0330.8170.018
Candies and other sweets−0.9830.0411.3790.020
Alcohol−1.0000.0221.0910.008
Soft drinks−0.9300.0220.8560.011
Tea and coffee−0.9290.0250.6260.010
Water−1.8160.0671.7740.029
Hot takeaway−1.0970.1361.3580.134
Table 2.

Demand elasticities

Food subgroupOwn-price
Expenditure
LinearStd Dev.LinearStd Dev.
Cheeses−0.6550.0300.8780.014
Eggs−0.7470.0300.5020.023
Milk and cream−0.6010.0320.9650.012
Other dairy−0.9810.0371.3520.018
Beef−0.8530.0410.8290.019
Lamb−0.9100.0410.8340.023
Pork−0.8420.0370.8510.019
Poultry−0.9480.0210.8300.016
Fish−0.6880.0390.7990.019
Other meats−1.6360.1081.6540.034
Breads−0.7170.0270.8760.013
Breakfast cereals−0.7290.0300.8350.014
Rice and pasta−0.7810.0250.8060.020
Potatoes−0.9460.0280.7710.025
Other starches−1.2670.0551.5170.022
Fresh fruit and vegetables−0.9850.0221.1030.008
Frozen fruit and vegetables−1.1050.0440.6420.023
Tinned and processed fruit and vegetables−0.9080.0390.5180.021
One-a-day only fruit and vegetables−0.8050.0310.6670.017
Other fruit and vegetables−1.2130.0531.5530.033
All fats−0.6070.0290.6410.019
Biscuit, cakes, pastry−0.7510.0251.0070.016
Chips and crisps−0.8900.0330.8170.018
Candies and other sweets−0.9830.0411.3790.020
Alcohol−1.0000.0221.0910.008
Soft drinks−0.9300.0220.8560.011
Tea and coffee−0.9290.0250.6260.010
Water−1.8160.0671.7740.029
Hot takeaway−1.0970.1361.3580.134
Food subgroupOwn-price
Expenditure
LinearStd Dev.LinearStd Dev.
Cheeses−0.6550.0300.8780.014
Eggs−0.7470.0300.5020.023
Milk and cream−0.6010.0320.9650.012
Other dairy−0.9810.0371.3520.018
Beef−0.8530.0410.8290.019
Lamb−0.9100.0410.8340.023
Pork−0.8420.0370.8510.019
Poultry−0.9480.0210.8300.016
Fish−0.6880.0390.7990.019
Other meats−1.6360.1081.6540.034
Breads−0.7170.0270.8760.013
Breakfast cereals−0.7290.0300.8350.014
Rice and pasta−0.7810.0250.8060.020
Potatoes−0.9460.0280.7710.025
Other starches−1.2670.0551.5170.022
Fresh fruit and vegetables−0.9850.0221.1030.008
Frozen fruit and vegetables−1.1050.0440.6420.023
Tinned and processed fruit and vegetables−0.9080.0390.5180.021
One-a-day only fruit and vegetables−0.8050.0310.6670.017
Other fruit and vegetables−1.2130.0531.5530.033
All fats−0.6070.0290.6410.019
Biscuit, cakes, pastry−0.7510.0251.0070.016
Chips and crisps−0.8900.0330.8170.018
Candies and other sweets−0.9830.0411.3790.020
Alcohol−1.0000.0221.0910.008
Soft drinks−0.9300.0220.8560.011
Tea and coffee−0.9290.0250.6260.010
Water−1.8160.0671.7740.029
Hot takeaway−1.0970.1361.3580.134
Table 3.

Distributional characteristics of food groups ρ=1.0

Food groupDistributional characteristic
Food expenditure
Total expenditure
Welfare weightsWelfare weights
Milk and cream0.8240.985
Breads0.8060.982
Eggs0.7770.952
Fries and chips0.7750.982
Rice and pasta0.7600.956
Candies and other sweets0.7540.974
Tea and coffee0.7520.948
All fats0.7510.969
Breakfast cereals0.7500.906
Potatoes0.7480.974
Soft drinks0.7470.919
Cookies, cakes, pastry0.7470.951
Tinned and processed fruit and vegetables0.7460.972
Hot take-out0.7380.828
Other meats0.7370.951
Frozen fruit and vegetables0.7360.931
Other starches0.7210.876
Other dairy0.7200.903
One-a-day only fruit and vegetables0.7190.853
Cheeses0.7110.857
Beef0.7090.913
Fresh fruit and vegetables0.7080.857
Pork0.7000.897
Poultry0.6950.882
Other fruit and vegetables0.6900.827
Fish0.6890.883
Water0.6490.739
Lamb0.6430.939
Alcohol0.5970.772
Non-food0.607
Food groupDistributional characteristic
Food expenditure
Total expenditure
Welfare weightsWelfare weights
Milk and cream0.8240.985
Breads0.8060.982
Eggs0.7770.952
Fries and chips0.7750.982
Rice and pasta0.7600.956
Candies and other sweets0.7540.974
Tea and coffee0.7520.948
All fats0.7510.969
Breakfast cereals0.7500.906
Potatoes0.7480.974
Soft drinks0.7470.919
Cookies, cakes, pastry0.7470.951
Tinned and processed fruit and vegetables0.7460.972
Hot take-out0.7380.828
Other meats0.7370.951
Frozen fruit and vegetables0.7360.931
Other starches0.7210.876
Other dairy0.7200.903
One-a-day only fruit and vegetables0.7190.853
Cheeses0.7110.857
Beef0.7090.913
Fresh fruit and vegetables0.7080.857
Pork0.7000.897
Poultry0.6950.882
Other fruit and vegetables0.6900.827
Fish0.6890.883
Water0.6490.739
Lamb0.6430.939
Alcohol0.5970.772
Non-food0.607
Table 3.

Distributional characteristics of food groups ρ=1.0

Food groupDistributional characteristic
Food expenditure
Total expenditure
Welfare weightsWelfare weights
Milk and cream0.8240.985
Breads0.8060.982
Eggs0.7770.952
Fries and chips0.7750.982
Rice and pasta0.7600.956
Candies and other sweets0.7540.974
Tea and coffee0.7520.948
All fats0.7510.969
Breakfast cereals0.7500.906
Potatoes0.7480.974
Soft drinks0.7470.919
Cookies, cakes, pastry0.7470.951
Tinned and processed fruit and vegetables0.7460.972
Hot take-out0.7380.828
Other meats0.7370.951
Frozen fruit and vegetables0.7360.931
Other starches0.7210.876
Other dairy0.7200.903
One-a-day only fruit and vegetables0.7190.853
Cheeses0.7110.857
Beef0.7090.913
Fresh fruit and vegetables0.7080.857
Pork0.7000.897
Poultry0.6950.882
Other fruit and vegetables0.6900.827
Fish0.6890.883
Water0.6490.739
Lamb0.6430.939
Alcohol0.5970.772
Non-food0.607
Food groupDistributional characteristic
Food expenditure
Total expenditure
Welfare weightsWelfare weights
Milk and cream0.8240.985
Breads0.8060.982
Eggs0.7770.952
Fries and chips0.7750.982
Rice and pasta0.7600.956
Candies and other sweets0.7540.974
Tea and coffee0.7520.948
All fats0.7510.969
Breakfast cereals0.7500.906
Potatoes0.7480.974
Soft drinks0.7470.919
Cookies, cakes, pastry0.7470.951
Tinned and processed fruit and vegetables0.7460.972
Hot take-out0.7380.828
Other meats0.7370.951
Frozen fruit and vegetables0.7360.931
Other starches0.7210.876
Other dairy0.7200.903
One-a-day only fruit and vegetables0.7190.853
Cheeses0.7110.857
Beef0.7090.913
Fresh fruit and vegetables0.7080.857
Pork0.7000.897
Poultry0.6950.882
Other fruit and vegetables0.6900.827
Fish0.6890.883
Water0.6490.739
Lamb0.6430.939
Alcohol0.5970.772
Non-food0.607

The tax applied to selected food groups is based on saturated fat content, while the subsidy is applied to fruit and vegetables. The choice of saturated fat as the prime target of the tax is justified by evidence from the medical literature: Saturated fats are an important risk factor in the occurrence of coronary heart disease (Hu et al., 1997), higher systolic blood pressure (Esrey, Joseph, Grover, 1996) and higher plasma concentration of cholesterol (Ascherio et al., 1994). Fruit and vegetables, on the other hand, are positively linked to lower risks of various cancers (Ames, Gold, Willett, 1995; Riboli and Norat, 2003), major chronic diseases (Hung et al., 2004) and ischaemic stroke (Joshipura et al., 2001). Specifically, the fiscal scheme simulated increases in the price of each food group by 1 per cent for every per cent total energy comprised of saturated fat within the group. The EFS dataset contains nutrient conversion tables that are used to convert food group items into nutrient content. For example, since milk contains 1.72 per cent of saturated fats, its price increases by 1.72 per cent. A ceiling of 15 per cent is placed on the simulated price increase. To offset this tax burden, and to encourage the consumption of fruit and vegetables, a subsidy on fruit and vegetables is introduced. The subsidy is calculated so that the overall fiscal policy is revenue neutral, so the revenue generated from the tax completely funds the subsidy. This works out to be ∼27 per cent on the selected fruit and vegetable categories. Table 1 presents the tax and subsidy rates applied to the different component food group items.

5. Estimating food demand elasticities

The calculation of the second-order measure of welfare change requires estimates of the own-price elasticities of demand. We obtain these by estimating a linear approximate AIDS model using the same dataset that is used to calculate the welfare changes themselves. The model is estimated at the household level and we use the infrequency of the purchase model (Cragg, 1971; Tiffin and Arnoult, 2010) to address the censoring which occurs because the data are collected in a 2-week window. In addition to the standard variables in the AIDS, we include a set of socio-demographic variables to account for the effects of differing household composition on demand. Table 2 presents the own-price (uncompensated) elasticities for each of the component food groups.11

6. Results

We present results for two alternative settings. In the first, we focus solely on the part of the household budget that is spent on food. Thus, the distributional characteristics are computed using only the food groups in Table 1 and the expenditure weights are computed using expenditure on food for the variable E in equation (14). In the second, we analyse all expenditure by including an additional group to represent consumption of non-food items measured as non-food expenditure. In this case, we use total expenditure to compute the welfare weights. The distributional characteristic, discussed in Section 3.1, is a scale-free measure with higher values indicating that consumption of a particular good is concentrated in households for which the marginal social benefit of increased income is highest. It measures the socially weighted level of consumption relative to a situation in which the social weights are equal across households (see equation (2)). The social weights are not normalised across the two settings in which the distributional characteristic is calculated and therefore the distributional characteristics for each setting are not comparable with each other. Comparison between the food expenditure and total expenditure weighted results is therefore conducted using the position of a particular food in the ranking of foods by distributional characteristics.

The larger the distributional characteristic of a good, the more disproportionate is the burden on poorer households. Likewise, a subsidy on a good with a smaller distributional characteristic will be disproportionately paid to better off households. Table 3 presents the distributional characteristics for the food groups under examination. We report characteristics for a single value of the inequality aversion parameter because the pattern is similar across values. The ranking of the food groups is broadly similar across the two alternative calculations. There are some notable exceptions, however, of which the most marked is lamb which is 28th in the food expenditure weighted results and 13th in the results where the welfare weights are based on all expenditure. This implies that lamb purchases are more highly concentrated in households that have low incomes than in households that have low food expenditure. The four food groups with the highest ranking (i.e. the highest distributional characteristics), reflecting expenditure being concentrated among households with high marginal utilities of expenditure are milk, bread, eggs, chips and crisps, and rice and pasta. The four food groups with the lowest ranking, reflecting expenditure being concentrated in the higher-income households are alcohol, lamb, water and fish. Table 3 also shows that in many instances the distributional characteristics are very close in value for some goods. For example, tea and coffee, fats, breakfast cereal and confectionery have distributional characteristics that are very close.

An examination of the distributional characteristics of the five food groups shows which will be subject to the highest tax rates: cheese; all fats; cookies, cakes and pastry; beef and lamb show that they cover a wide range. Consumption of all fats and cookies is relatively concentrated among the socially deserving while that of the red meats and cheese is concentrated among the socially less deserving. The distributional characteristic of fresh fruit and vegetables shows that consumption is concentrated among the socially less deserving. Considering the results obtained with the welfare weights based on total expenditure, it can be seen that the distributional characteristics of the food groups are all substantially larger than that for non-food expenditure. This supports the widely recognised view that taxation of food will be regressive.

Despite this, the narrow range covered by the distributional characteristics for the food groups (in comparison with those calculated for all goods in Newbery (1995) and Madden (1995a)) suggests that a policy that taxes food groups according to their saturated fat content at this level of aggregation would not be much more regressive than a tax on food as a whole. It is worth emphasising, however, that the distributional characteristic of fresh fruit and vegetables is towards the bottom end of the range, showing that consumption is concentrated among the socially less deserving. Welfare economics would therefore suggest that goods in this category should be taxed for redistributive purposes. The subsidy which is proposed here as a means of improving diets would increase the regressivity of the policy in comparison with a situation where only a tax on high-fat products is imposed. These results show that a tension exists between redistributive and public health policy objectives. While policy guided by public health concerns may desire higher prices in food groups such as fats and lower prices in fresh fruits and vegetables, a policy guided by economic welfare considerations would suggest a subsidy on fats and a tax on fresh fruits and vegetables. It should be noted, however, that as stated earlier drawing conclusions alone from the distributional characteristics should be nuanced since these measures do not account for consumer price response nor do they provide an assessment of the size of the fiscal burden resulting from a fiscal policy. Later the discussion turns to the welfare measures derived above, specifically the second-order welfare approximation to address these issues.

It has been noted that some of the groups which are analysed in Table 3 include a range of saturated fat contents. In Tables 4 and 5, we present the distributional characteristics for selected goods within a highly disaggregated set of 244 goods. The same caveat as above, concerning non-comparability between the situations in which the welfare weights are based on food and total expenditure, respectively, is applicable to these tables. The distributional characteristics for a given setting, be it food expenditure- or total expenditure-based weights can be compared between Tables 3, 4 and 5, however. Tables 4 and 5 show that by focusing attention at a more disaggregated level the differences in diet between rich and poor households are amplified.12 For example, referring to Table 4, it can be seen that whole milk is among the goods which are most concentrated in socially deserving households, while the lower-fat-skimmed and semi-skimmed alternatives are much less so. From an economic perspective, this effect is important because it shows that a tax which is designed to induce substitution of skimmed and semi-skimmed milk for whole milk will be more regressive than a uniform tax on all milk. Table 5 reveals a similar situation applies to the all fats category. Overall, foods in this group are among the most concentrated in the socially deserving households but those which are lower in saturated fats are less so. A fiscal policy that is designed to induce substitution towards the more healthy products will again be regressive. Comparing the results obtained with food expenditure-based welfare weights with those for total expenditure-based weights, it can be seen that substantial differences in ranking exist for infant milk and for lard, suet and dripping. Both dried and ready-to-drink infant milk is concentrated in households which have relatively low levels of food expenditure and high levels of total expenditure. In contrast, lard, suet and dripping tend to be consumed in households with relatively high food expenditure and low levels of total expenditure.

Table 4.

Distributional characteristics for milk

FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
UHT whole milk4.10.98021.2635
Sterilised whole milk4.10.97231.3923
Instant dried milk<0.010.94341.25526
Infant or baby milk – ready to drink3.10.93450.979556
Infant or baby milk – dried3.90.91270.950777
Pasteurised/homogenised whole milk4.10.90891.140310
Condensed or evaporated milk3.70.780441.11814
Semi-skimmed milk1.80.780450.9033118
Fully skimmed milk<0.010.759660.8636161
Dried milk products2.80.7271070.9228102
Milk drinks and other milks2.20.6671930.8627163
FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
UHT whole milk4.10.98021.2635
Sterilised whole milk4.10.97231.3923
Instant dried milk<0.010.94341.25526
Infant or baby milk – ready to drink3.10.93450.979556
Infant or baby milk – dried3.90.91270.950777
Pasteurised/homogenised whole milk4.10.90891.140310
Condensed or evaporated milk3.70.780441.11814
Semi-skimmed milk1.80.780450.9033118
Fully skimmed milk<0.010.759660.8636161
Dried milk products2.80.7271070.9228102
Milk drinks and other milks2.20.6671930.8627163
Table 4.

Distributional characteristics for milk

FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
UHT whole milk4.10.98021.2635
Sterilised whole milk4.10.97231.3923
Instant dried milk<0.010.94341.25526
Infant or baby milk – ready to drink3.10.93450.979556
Infant or baby milk – dried3.90.91270.950777
Pasteurised/homogenised whole milk4.10.90891.140310
Condensed or evaporated milk3.70.780441.11814
Semi-skimmed milk1.80.780450.9033118
Fully skimmed milk<0.010.759660.8636161
Dried milk products2.80.7271070.9228102
Milk drinks and other milks2.20.6671930.8627163
FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
UHT whole milk4.10.98021.2635
Sterilised whole milk4.10.97231.3923
Instant dried milk<0.010.94341.25526
Infant or baby milk – ready to drink3.10.93450.979556
Infant or baby milk – dried3.90.91270.950777
Pasteurised/homogenised whole milk4.10.90891.140310
Condensed or evaporated milk3.70.780441.11814
Semi-skimmed milk1.80.780450.9033118
Fully skimmed milk<0.010.759660.8636161
Dried milk products2.80.7271070.9228102
Milk drinks and other milks2.20.6671930.8627163
Table 5.

Distributional characteristics for fats

FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
Soft margarine720.850121.1439
Other margarine790.825161.07524
Other vegetable/salad oils920.803281.11216
Lard, cooking fat1000.791351.1977
Reduced fat spreads620.767560.97958
Low fat spreads370.751790.93891
Butter820.7181220.910112
Suet and dripping910.7071441.08923
Other spreads/dressings240.6991590.903120
Salad dressings420.6881720.799203
Olive oil910.6222280.730231
FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
Soft margarine720.850121.1439
Other margarine790.825161.07524
Other vegetable/salad oils920.803281.11216
Lard, cooking fat1000.791351.1977
Reduced fat spreads620.767560.97958
Low fat spreads370.751790.93891
Butter820.7181220.910112
Suet and dripping910.7071441.08923
Other spreads/dressings240.6991590.903120
Salad dressings420.6881720.799203
Olive oil910.6222280.730231
Table 5.

Distributional characteristics for fats

FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
Soft margarine720.850121.1439
Other margarine790.825161.07524
Other vegetable/salad oils920.803281.11216
Lard, cooking fat1000.791351.1977
Reduced fat spreads620.767560.97958
Low fat spreads370.751790.93891
Butter820.7181220.910112
Suet and dripping910.7071441.08923
Other spreads/dressings240.6991590.903120
Salad dressings420.6881720.799203
Olive oil910.6222280.730231
FoodSFA content (%)Using food expenditure
Using total expenditure
Welfare weights
Welfare weights
DCRankDCRank
Soft margarine720.850121.1439
Other margarine790.825161.07524
Other vegetable/salad oils920.803281.11216
Lard, cooking fat1000.791351.1977
Reduced fat spreads620.767560.97958
Low fat spreads370.751790.93891
Butter820.7181220.910112
Suet and dripping910.7071441.08923
Other spreads/dressings240.6991590.903120
Salad dressings420.6881720.799203
Olive oil910.6222280.730231

Analysis of the distributional characteristics alone gives an indication of where consumption of particular goods is concentrated and as a result, how the fiscal burden will be distributed. It does not give any measure of the size of the fiscal burden nor of how the size of the burden will be influenced by alternative assumptions regarding society's preferences concerning distributional equity. Tables 6 and 7 therefore report the results of computing the first-order approximation in equation (7) and the second-order approximation in equation (8) for the fiscal policy described in Table 1 over different values of inequality aversion. Table 6 reports the results where total welfare is derived only from food and the welfare weights are based on food expenditure. Table 7 reports the results where total welfare is derived from all consumption and the welfare weights are based on total expenditure. In the aggregate analysis, the tax rates were calculated at the level of the aggregate commodity (24 tax rates) and in the disaggregate analysis they are at the level of individual food items (244 tax rates). We report only the first-order welfare changes for the disaggregated goods because the elasticities necessary to estimate the second-order impacts are not available at this level of aggregation. The first-order effects can be taken to be a lower bound on the welfare change. The welfare changes that we report are a measure of the proportionate change in expenditure that could be applied to everyone which would be equivalent in social welfare terms to the effect of the price changes resulting from the implementation of the fiscal food policy (Newbery, 1995). Thus, the results show that with an inequality aversion coefficient of 1 and considering only the first-order effect, the tax only policy is equivalent to the welfare loss that results from a 1.88 per cent reduction in food expenditure and 1.40 per cent reduction in total expenditure.

Table 6.

Welfare effect of fiscal policy, food only

 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.86−1.680.291.41−1.750.39
ρ=0.5−1.87−1.690.241.34−1.760.34
ρ=1.0−1.88−1.700.191.28−1.770.30
ρ=1.5−1.88−1.700.121.18−1.750.23
ρ=2.0−1.87−1.68−0.050.93−2.060.06
 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.86−1.680.291.41−1.750.39
ρ=0.5−1.87−1.690.241.34−1.760.34
ρ=1.0−1.88−1.700.191.28−1.770.30
ρ=1.5−1.88−1.700.121.18−1.750.23
ρ=2.0−1.87−1.68−0.050.93−2.060.06
Table 6.

Welfare effect of fiscal policy, food only

 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.86−1.680.291.41−1.750.39
ρ=0.5−1.87−1.690.241.34−1.760.34
ρ=1.0−1.88−1.700.191.28−1.770.30
ρ=1.5−1.88−1.700.121.18−1.750.23
ρ=2.0−1.87−1.68−0.050.93−2.060.06
 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.86−1.680.291.41−1.750.39
ρ=0.5−1.87−1.690.241.34−1.760.34
ρ=1.0−1.88−1.700.191.28−1.770.30
ρ=1.5−1.88−1.700.121.18−1.750.23
ρ=2.0−1.87−1.68−0.050.93−2.060.06
Table 7.

Welfare effect of fiscal policy, all goods

 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.21−1.090.190.91−1.140.25
ρ=0.5−1.31−1.180.140.91−1.230.22
ρ=1.0−1.40−1.270.100.90−1.330.18
ρ=1.5−1.49−1.350.050.88−1.410.13
ρ=2.0−1.58−1.420.000.87−1.500.09
 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.21−1.090.190.91−1.140.25
ρ=0.5−1.31−1.180.140.91−1.230.22
ρ=1.0−1.40−1.270.100.90−1.330.18
ρ=1.5−1.49−1.350.050.88−1.410.13
ρ=2.0−1.58−1.420.000.87−1.500.09
Table 7.

Welfare effect of fiscal policy, all goods

 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.21−1.090.190.91−1.140.25
ρ=0.5−1.31−1.180.140.91−1.230.22
ρ=1.0−1.40−1.270.100.90−1.330.18
ρ=1.5−1.49−1.350.050.88−1.410.13
ρ=2.0−1.58−1.420.000.87−1.500.09
 Tax applied at aggregate level
Tax applied at disaggregate level
Tax only
Combined tax/subsidy
Tax only
Combined tax/subsidy
1st Order2nd Order1st Order2nd Order1st Order1st Order
ρ=0−1.21−1.090.190.91−1.140.25
ρ=0.5−1.31−1.180.140.91−1.230.22
ρ=1.0−1.40−1.270.100.90−1.330.18
ρ=1.5−1.49−1.350.050.88−1.410.13
ρ=2.0−1.58−1.420.000.87−1.500.09

The results for the tax only policy show that such a policy is equivalent to the reduction in welfare that would result from between a 1 and 2 per cent reduction in consumer expenditure. The largest reduction in welfare arises when we consider food expenditure only and the policy is applied at a disaggregate level, for example, it distinguishes between skimmed and full-fat milk. The impact of the tax increases as the level of inequality aversion increases, a reflection of the regressivity of the tax. The difference is small, however, when the welfare weights are based on food alone and the focus is on aggregate goods. This is a reflection of the relative similarity of distributional characteristics for goods at an aggregate level, a consequence of limited difference in the tendency for taxed and untaxed goods to be concentrated in socially deserving households. The difference in welfare impact between levels of inequality aversion is larger when we examine disaggregated goods and expenditure across all goods. This reflects the greater degree to which goods that are taxed are concentrated in socially deserving households when considering disaggregated goods and the larger differences in total expenditure and hence welfare weights that exist for total expenditure in comparison with food expenditure. In all cases the first-order effects exceed the second-order effects, the difference reflecting the extent to which consumers can ameliorate the impacts of the tax through substitution.

When the tax is combined with a subsidy it can be seen that the subsidy more than compensates for the impact of a tax in all but one of the cases examined. The combined effect ranges from a 0.05 per cent reduction to a 1.41 per cent equivalent increase in expenditure. When considering the effects only at the level of food expenditure the difference in the welfare change that exists between the lowest and highest levels of inequality aversion is increased as a result of combining the tax with a subsidy. Thus, the combined tax and subsidy is more regressive than the tax alone. This is a consequence of the relatively low distributional characteristics associated with fruit and vegetables, indicating that these goods are relatively highly concentrated in the socially undeserving households. This effect is reversed when looking at the case of all expenditure where combining the tax with a subsidy leads to a smaller difference between the welfare changes associated with the smallest and largest values of inequality aversion. Thus, the policy remains more regressive but is less so than a tax alone. This difference can be explained by the fact that tinned and processed fruit and vegetables are much more concentrated in households that are judged to be socially deserving when this judgement is based on levels of total expenditure than when it is based on levels of food expenditure.

In terms of the existing literature, these results reinforce the finding that a fiscal food policy based on a tax on saturated fats and a subsidy of fruits and vegetables is socially regressive. Similar conclusions are reached in Leicester and Windmeijer (2004), Chouinard et al. (2007) and Allais et al. (2010). It should be noted that while Okrent and Alston (2012) find a negative change in welfare from a fat tax, the change is actually positive once changes in public health expenditure are accounted for in the framework. A key difference between the prior studies and this one, however, is the finding that not only are the poorest households more negatively effected by the policy, but that even a subsidy is regressive because of the distribution of consumption of fruits and vegetables. As other studies (Nordström and Thunström, 2011) have clearly demonstrated, a tax may be effective in reducing average fat intakes and, when combined with a subsidy, increasing average fruit and vegetable intakes. The core objective in changing health patterns, however, may not be met as the marginal change in diet that results from price changes is insufficient to move those who have extremely bad diets to the extent that would be required to remove the substantial risk that eating such a diet brings to one's health (Tiffin and Arnoult, 2011). Furthermore, a tax on food will also have a proportionately larger impact on the poorer segments of society which will worsen as the tax becomes increasingly targeted on the specific elements of the diet which are unhealthy.

7. Conclusion

Diet-related disease arising from poor dietary choices is of substantial concern to societies throughout the developed world. For example, being obese increases the risks of a range of chronic health problems including heart disease, type 2 diabetes and high blood pressure. Additionally, it has been shown that increased levels of fruit and vegetable consumption will contribute to a reduction in the incidence of some cancers. As a result, there is an increase in interest in public health policies that are designed to reduce the impacts of diet-related disease. One such policy is a fiscal intervention designed to reduce the consumption of calorie and fat dense food and to encourage the consumption of fruit and vegetables. The literature analysing the impacts of this type of policy has primarily been concerned with measuring the benefits in terms of the numbers of lives saved. The degree to which the costs, as represented by the fiscal burden, have been analysed is limited. Moreover, recognising that such policies are criticised on the grounds that taxing food is likely to be regressive, it is important that the analysis of the fiscal burden addresses the question of distributional equity. It is important that population-based measures, such as a fiscal food policy, reflect potential inequalities that may result from their undifferentiated approach. There have been some attempts at measuring the extent of the regressivity, but none have adopted a formal welfare economics-based analysis that allows for distributional concerns. A significant failing of the existing studies is therefore that they fail to fully reflect differences in the interpersonal impact of alternative policies and assumptions regarding societal preferences for distributional equity. The results in this paper emphasise this point, as findings suggest the regressivity of a fiscal food policy increases as the tax becomes focused on products with high saturated fat contents and is, in fact, more regressive when coupled with a subsidy on fruit and vegetables because consumption of these foods tends to be concentrated in households at the upper end of the distribution.

This paper focuses on an evaluation of the costs associated with a fiscal intervention designed to improve diets. It uses a framework drawn from the literature of marginal tax reform which explicitly incorporates a social welfare function to allow inter-household differences in marginal social utility. Distributional characteristics identify the extent to which consumption is concentrated in households at different points in the spectrum of social marginal utilities. A progressive redistributive policy would have a negative correlation between the tax rate and the distributional characteristic showing that goods which tend to be consumed in the most socially deserving households (those with the highest marginal social utility) are subject to the lowest tax rates. We find that the distributional characteristic does not differ much between aggregate food groups and there is no evidence of a negative relationship between saturated fat content (and thus tax rate) and the distributional characteristic. When looking at more disaggregated goods some important differences arise. For example, consumption of full-fat milk is found to be much more highly concentrated in socially deserving households than reduced fat alternatives. Likewise, margarine consumption is concentrated in socially deserving households while reduced fat alternatives tend to be consumed in the less socially deserving. Finally, we find that the distributional characteristic of fresh fruit and vegetables tends to be high, implying that a policy which includes a subsidy to try and induce an increase in consumption of these goods will be more regressive than one which is based on a tax on saturated fat content alone. These results show that a policy that is designed to induce a movement towards a healthier diet will become more regressive as the policy becomes more targeted.

In exploring the welfare changes that result firstly when only a tax is applied to foods that are high in saturated fat, we find that the loss in welfare ranges from 1.21 to 2.06 per cent. The loss increases with the level of inequality aversion and when it is applied at a more disaggregate level. This reflects the concentration of goods that are subject to high levels of taxation in households that are socially deserving and the increased tendency for this to be the case as the tax becomes more precisely focused on products that are high in saturated fat. This result highlights an obvious tension inherent in the use of a tax to improve the quality of diets: poor diets tend to be concentrated in low-income households and therefore the more effective a policy is in targeting poor diets, the greater the distributional inequity in the fiscal burden. From a social perspective therefore the desirability of this type of policy demands a balancing of our desire to see improvements in the quality of poor people's diets, and the effectiveness of the policy in achieving this, with our desire for a more equitable distribution of wealth. Since healthy food tends to be consumed in wealthier households, coupling the tax with a subsidy on healthy food exacerbates the situation. Thus, while our particular subsidy (of 27 per cent) on fruit and vegetables is sufficient to more than compensate for the tax such that welfare increases, the increase in welfare decreases as the level of inequality aversion increases.

Overall our results support that contention that, when considering the costs of a fiscal food policy, the impacts of the intervention will be regressive. It should be recognised, however, that the benefits of the intervention are also likely to be unequally spread in society and if, as is likely, poor diets tend to occur in poor households the benefits may be progressive. Note, however, that this is dependent not only on the distribution of consumption, but also on the price responsiveness of different income cohorts. The potential for tension to exist between the distribution of cost and benefit is, however, highlighted by our paper: the more targeted the policy is at achieving the desirable health outcome the more damaging it is in terms of economic welfare. Achieving a balance between these competing ends is therefore a paramount consideration in designing such a policy.

References

Ahmad
E.
Stern
N.
(
1984
).
The theory and reform of Indian indirect taxes
.
Journal of Public Economics
25
:
259
298
.

Allais
O.
Bertail
P.
Nichele
V.
(
2010
).
The effect of a fat tax on French household's purchases: a nutritional approach
.
American Journal of Agricultural Economics
92
:
22
245
.

Ames
B.
Gold
L.
Willett
W.
(
1995
).
The causes and prevention of cancer
.
Proceedings of the National Academy of Sciences
92
(12)
:
5258
5265
.

Ascherio
A.
Hennekens
C.
Buring
J.
Master
C.
Willett
M. S. W.
(
1994
).
Transfatty acids intake and risk of myocardial infarction
.
Circulation
89
(1)
:
94
101
.

Atkinson
A.
(
1970
).
On the measurement of inequality
.
Journal of Economic Theory
2
:
244
263
.

Atkinson
A.
Stiglitz
J.
(
1980
).
Lectures on Public Economics
.
Madenhead, UK
:
McGraw-Hill
.

Banks
J.
Blundell
R.
Lewbel
A.
(
1996
).
Tax reform and welfare measurement: do we need demand system estimation?
Economic Journal
106
:
1227
1241
.

Bergson
A.
(
1938
).
A reformulation of certain aspects of welfare economics
.
Quarterly Journal of Economics
52
:
310
334
.

Blackorby
C.
Donaldson
D.
(
1988
).
Money-metric utility: a harmless normalization
.
Journal of Economic Theory
46
:
120
129
.

Chouinard
H.
Davis
D.
LaFrance
J.
Perloff
J.
(
2005
).
The effects of a fat tax on dairy products
.
CUDARE Working Paper 1007
.
Berkeley, USA
:
Department of Agricultural and Resource Economics, University of California
.

Chouinard
H.
Davis
D.
LaFrance
J.
Perloff
J.
(
2007
).
Fat taxes: big money for small change
.
Forum for Heath Economics and Policy
24
,
Article 2
.

Cragg
J.
(
1971
).
Some statistical models for limited dependent variables with application to demand for durable goods
.
Econometrica
39
(5)
:
829
844
.

Esrey
K.
Joseph
L.
Grover
S.
(
1996
).
Relationships between dietary intake and coronary heart disease mortality
.
Journal of Clinical Epidemiology
49
(2)
:
211
216
.

Feldstein
M.
(
1972
).
Distributional equity and the optimal structure of public prices
.
American Economic Review
62
:
32
36
.

Hu
F.
Stampfer
M.
Manson
J.
Rimm
E.
Colditz
G.
Rosner
B.
Hennekens
C.
Willett
W.
(
1997
).
Dietary fat intake and the risk of coronary heart disease in women
.
New England Journal of Medicine
337
(21)
:
1491
1499
.

Hung
H.
Joshipura
K.
Jiang
R.
Hu
F.
Hunter
D.
Smith-Warner
S.
Colditz
G.
Rosner
B.
Spiegelman
D.
Willett
W.
(
2004
).
Fruit and vegetable intake and risk of major chronic disease
.
Journal of the National Cancer Institute
96
(21)
:
1577
1584
.

Joshipura
K.
Hu
F.
Manson
J.
Stampfer
M.
Speizer
E. R. F.
Colditz
G.
Ascherio
A.
Rosner
B.
Willett
D. S. W.
(
2001
).
The effect of fruit and vegetable intake on risk for coronary heart disease
.
Annals of Internal Medicine
134
(12)
:
1106
1114
.

Kaplanoglou
G.
(
2004
).
Household consumption patterns, indirect tax structures and implications for indirect tax harmonisation: a three country perspective
.
Economic and Social Review
35
:
83
107
.

Leicester
A.
Windmeijer
F.
(
2004
).
The ‘fat tax’: Economic Incentives to Reduce Obesity
.
Briefing note 149
.
London, UK
:
Institute for Fiscal Studies
.

Liberati
P.
(
2001
).
The distributional effects of indirect tax changes in Italy
.
International Tax and Public Finance
8
:
27
51
.

Madden
D.
(
1995a
).
An analysis of indirect tax reform in Ireland in the 1980s
.
Fiscal Studies
16
:
18
37
.

Madden
D.
(
1995b
).
Labour supply, commodity demand and marginal tax reform
.
Economic Journal
105
:
485
497
.

Marshall
T.
(
2000
).
Exploring a fiscal food policy: the case of diet and ischaemic heart disease
.
British Medical Journal
320
(7230)
:
301
304
.

Mytton
O.
Gray
A.
Rayner
M.
Rutter
H.
(
2007
).
Could targeted food taxes improve health?
Journal of Epidemiology and Community Health
61
(8)
:
689
694
.

Newbery
D.
(
1995
).
The distributional impact of price changes in Hungary and the United Kingdom
.
Economic Journal
105
:
847
863
.

Newbery
D.
Stern
N.
(
1987
).
The Theory of Taxation for Developing Countries
.
Oxford, UK
:
Oxford University Press
.

Nordström
J.
Thunström
L.
(
2011
).
Can targeted food taxes and subsidies improve the diet? Distributional effects among income groups
.
Food Policy
36
:
259
271
.

Okrent
A.
Alston
J.
(
2012
).
The effects of farm commodity and retail food policies on obesity and economic welfares in the United States
.
American Journal of Agricultural Economics
94
:
611
646
.

Powell
L.
Chaloupka
F.
(
2009
).
Food prices and obesity: evidence and policy implications for taxes and subsidies
.
Milbank Quarterly
87
:
229
257
.

Ramsey
F.
(
1927
).
A contribution to the theory of taxation
.
Economic Journal
37
:
47
61
.

Ray
R.
(
1999
).
Marginal and non-marginal commodity tax reforms with rank two and rank three demographic demand systems
.
Oxford Economic Papers
51
:
689
712
.

Riboli
E.
Norat
T.
(
2003
).
Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk
.
American Journal of Clinical Nutrition
78
(3S)
:
559S
569S
.

Samuelson
P.
(
1956
).
Social indifference curves
.
Quarterly Journal of Economics
70
:
1
22
.

Samuelson
P.
(
1986
).
Theory of optimal taxation
.
Journal of Public Economics
30
:
137
143
.

Santoro
A.
(
2007
).
Marginal commodity tax reforms: a survey
.
Journal of Economic Surveys
21
:
827
848
.

Slesnick
D.
(
1998
).
Empirical approaches to the measurement of welfare
.
Journal of Economic Literature
36
:
2108
2165
.

Stern
N.
(
1987
).
The theory of optimal commodity and income taxation
. In:
Newbery
D.
Stern
N.
(eds),
The Theory of Taxation for Developing Countries
.
Oxford, UK
:
Oxford University Press
.

Tiffin
R.
Arnoult
M.
(
2010
).
The demand for a healthy diet: estimating the almost ideal demand system with infrequency of purchase
.
European Review of Agricultural Economics
37
(4)
:
501
521
.

Tiffin
R.
Arnoult
M.
(
2011
).
The public health impacts of a fat tax
.
European Journal of Clinical Nutrition
65
:
427
433
.

2

Assuming homothetic preferences implies that an individual income consumption curve is linear over the whole consumption set, which represents a critical flaw for applied welfare analysis. See Blackorby and Donaldson (1988) for a theoretical proof.

3

Given that household expenditure data are used in the welfare analysis, the relevant unit of measure in this paper is the household rather than the individual agent. See Slesnick (1998: 2123–2125) for a discussion on the justifications and limitations of modelling the household as the decision-making unit.

4

Indirect utility is a function of expenditure rather than income in the welfare analysis. Slesnick (1998: 2146) states that ‘in a static context the appropriate welfare indicator should be a function of total expenditure rather than income’, therefore expenditure can be taken as a proxy for income.

5

Previous studies tend to use the distributional characteristic in an ex post fashion in which the welfare impact of price changes that have already occurred is being analysed. The use of the distributional characteristic in this paper is ex ante, that is, the welfare impact of price changes that may occur is being analysed. This is similar in spirit to the problem investigated in Banks et al. (1996) who suppose a hypothetical price change on clothing to assess first-order and second-order welfare approximations.

6

The numerator of the distributional characteristic is actually the absolute impact of a price change on social welfare, which is derived in the next section.

7

This (standard) derivation of the second-order effects omits the cross-partial derivatives in the Taylor series. This means that the derivatives of the social welfare functions are assumed independent of cross-price effects. It does not imply that the cross-price effects on demand are omitted.

8

Total expenditure on all goods in each household is divided by the number of equivalent adults in each household to obtain expenditure per equivalent adult. The actual number of equivalent adults is obtained using the OECD equivalence scales, which counts the first adult in the household as one ‘full’ person. Additional adults count as 0.7 and children under the age of 14 count as 0.5.

9

Our approach to aggregation is not strictly in accordance with the theoretical requirement that goods in one aggregate should be seperable from those in another. This is justified because of the need to adopt aggregates that are amenable to the policy analysis that is the focus of this paper. The aggregation assumption means in practice that the cross-price elasticities between goods in one demand system and those in another are close to zero.

11

Full details on the AIDS are available from the author on request.

12

While the tables report the distributional characteristics for a subset of goods, they have been calculated for all goods.

Author notes

Review coordinated by Christoph Weiss