Skip to Main Content

Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom: (AMS-208)

Online ISBN:
9780691204932
Print ISBN:
9780691202525
Publisher:
Princeton University Press
Book

Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom: (AMS-208)

Vadim Kaloshin,
Vadim Kaloshin
University of Maryland, College Park
Find on
Ke Zhang
Ke Zhang
University of Toronto
Find on
Published online:
20 May 2021
Published in print:
3 November 2020
Online ISBN:
9780691204932
Print ISBN:
9780691202525
Publisher:
Princeton University Press

Abstract

Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. This book provides the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. The book follows Mather's strategy but emphasizes a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, the book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.

Contents
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close